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\i Abstract

\

An extensive study of the micromechanics aspects and size effects associated with
strain softening damage due to distributed cracking in brittle heterogeneous maierials
such as concrete, rocks and ceramics has been carried out and presented in a sequence
of publications. The results may be grouped in five categories: (1) Size Effects. (2)
Micromechanics Aspects, (3) Nonlocal Continuum Models, (4) Localization Instabili-
ties, {5) Thermodynamic Analysis of Stable Path, and (6) Numerical Implementation
of Localization Limiters.

The law governing the size effect due to localization of strain softening into a finite
size fracture process zone has been formulated, experimentally verified and calibrated.
Knowledge of the size effect law has led to a method of determining nonlinear fracture
properties on the basis of maximum loads of geometrically similar specimens of different
sizes. The concept of a brittleness number characterizing the proximity of response
of any structure to linear elastic fracture mechanics has been developed. Extensive

experiments have been conducted on concrete, rock and ceramics. . The size effect - -

analysis has been extended to variable temperature and humidity conditions, as well as
to fatigue fracture. Application to high strength concrete indicated that the fracture
energy does not increases as much as strength and the brittleness of high strength
concrete structures is higher than that of normal structures.

In the study of micromechanics, considerable effort has been devoted to random
particle simulation of cracking and fracture in aggregate composites. A method to
randomly simulate such microstructures has been formulated and the knowledge of
the size effect has been used to determine fracture characteristics of random particle
systems. Furthermore, analytical solutions of simplified situations with regular crack
arrays have been carried out to gain insight into the nonlocal aspect of the macroscopic
smoothing continuum and into the shape of the post-peak stress-displacement softening
curve. For the description of the stress-strain relations for the fracture process zone.
a microplane model in which the constitutive properties are described independently
on planes of various orientations in the material has been developed and shown to be
efficient and represent well available triaxial test data. Microcrack distributions in the
fracture process zone have been observed microscopically, slicing specimens in which
microcracks were propped open by a resin with fluorescent dye.

Nonlocal continuum models based on degradation of stiffness or degradation of
the yield limit have been formulated and shown to allow effective solution of large
finite element systems. The key property of these models is that nonlocal are only
those aspects which are associated with strain softening while the elastic response is
treated as local. Stability of the nonlocal models has also been analyzed. A method
for measurement of the characteristic lengths of the nonlocal continuum model has
been developed. As another aspect of micromechanics, softening instabilities have
been solved analytically for localization into a planar band within a layer of finite
thickness and localization into ellipsoidal regions. Conditions for instability as well
as bifurcation on a stable path have been given. The conditions for stability and
path bifurcation in a material with damage have been formulated on the basis of
thermodynamic ronsiderations.




INTRODUCTION

The salient property of failure of brittle aggregate materials such as concrete, rocks and
ceramic composites is the existence of distributed cracking and damage. Fracture is obtained
through the localization of cracking and is characterized by the presence of a microcracking
zone in front of the fracture tip as well as bridgine stresses behind it. The process of
localization of cracking or damage leads to size effects which are intermediate between the
size effects in the failures without localization, typified by plastic failures, and failures with
localization of damage into a point, typified by linear elastic fracture mechanics. Due to
the existence of distributed cracking. the classical continuum modeling of materials becomes
inadequate, and some form of a nonlocal formulation is required in order to correctly capture
the size effect and localization phenomena.

A three-year research program dealing with these problems has just been completed at
Northwestern University. The research results have been reported in full detail in a number
of papers (see the list in Appendix). The main results are briefly summarized in the present
report, and the principal publications are attached as Appendices. The presentation of
the results is grouped into six categories: (1) Size Effects, (2) Micromechanics Studies. (3)
Nonlocal Continuum Approach, (4) Localization Instabilities. (5) Thermodynamic Analysis

of Stable Path, and (6) Numerical and Analytical Studies of Localization.

1. SIZE EFFECTS

First, we will describe the results on the size effect which have been obtained on the basis
of experiments, coupled with dimensional analysis, similitude arguments and asymptotic
considerations. Discussion of the micromechanics aspects will be postponed to Section 2.

The size effect is the salient aspect of fracture mechanics. While all strength-based
theories of failure, e.g., plasticity, exhibit no size effect, the classical linear elastic fracture

mechanics exhibits a very strong size effect in which the nominal stress and failure (load
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divided by dimension and thickness) is proportional to the inverse square root of the size.
In brittle heterogeneous materials such as concrete, rocks or ceramics. the size effect is
transitional between these two extremes. It has been shown that from the shape of the
transition curve one can determine all the basic nonlinear fracture characteristics.

The principal results on the size effect are presented in Appendices Al and A2. A large
series of size effect tests of geometrically similar fracture specimens of various types has
been conducted and analyzed. With reference to size effect, a new, unambiguous definition
of the fracture energy of a material with a large fracture process zone has been conceived:
The fracture energy is the specific energy required for crack growth in an infinitely large
specimen.

Theoretically, this definition eliminates the effect of specimen size as well as shape and
the type of loading on the fracture energy value since it can be demonstrated by asymptotic
analysis that the stress field surrounding the fracture process zone in an infinitely large
specimen is always the same, except for a multiplicative factor. The problem is, therefore,
to identify the correct size effect law to be used for the extrapolation to infinite size. It
has been shown that a rather simple law (Eq. 2 in Al; and 6.2), proposed by Bazant, is
applicable for this purpose as an approximation. It has been experimentally verified that
very different types of specimens including three-point bend fracture specimens. edge-notched
tension specimens, and eccentric compression specimens indeed yield approximately the same
fracture energy values.

A method to calculate the R-curves (resistance curves) has been formulated, and evalu-
ation of the aformentioned tests showed that the R-curves for different specimen shapes are
rather different although they have the same final asymptotic value (6.7 in Al).

It was further shown that, on the basis of the size-effect law, one can define a brittleness
number (Eq. 8 and 10 in Al), which indicates how close the behavior of a specimen or
structure of any geometry is to linear elastic fracture mechanics or to plastic limit analysis.

Appendix A2 describes determination of all the basic nonlinear fracture parameters on

the basis of the size effect. Eq. 4 in A2 represents a size effect law formulated in terms of




the fracture energy and the effective length of the fracture process zone. What makes this
formulation possible is the introduction of the intrinsic (shape-independent) dimension of
the structure and the intrinsic nominal stress at maximum load (Eq. 6 in A2). Based on
this more fundamental form of the size effect law, the brittleness number of a structure can
be defined as a ratio of the intrinsic size to the effective length of the fracture process zone
(Eq. 11 in A2).

Furthermore, the R-curve can be expressed in terms of the fracture parameters as given
in Eq. 22 of A2. This expression for the R-curve has beca used to calculate load-deflection
curves of various types of specimens. Comparisons with experimental results have confirmed
a previous theoretical indication that the master R-curve obtained from the size effect law
is applicable only in the hardening regime, i.e., as long as the load is increasing. For the
post-peak regime, it has been found that the R-curve must be assumed to be horizontal,
with a value equal to that at the peak load. This behavior is due to the fact that in the
post-peak regime the fracture process zone stops growing, separates from the notch tip and
travels forward at roughly constant size.

Appendix Al also gives experimental verification of the applicability of the size effect law
to ceramics, in particular silicon carbide and slip-cast fused silica. In addition, Appendix A2
also contains a concise summary of the entire theory.

Appendix A3 exploits the size effect law for determining the dependence of the fracture
properties of concrete on temperature and for water content of conerete specimens. It is found
that the temperature dependence of fracture energy roughly follows a simple formula (Eq.
5 in A3) which has been derived on the basis of the activation energy theory for molecular
bonds. The activation energy has been found to be strongly dependent on the moisture
content. Experiments showed the fracture eﬁergy of dried concrete to be much less than
that of wet concrete, especially at high temperatures.

Appendix A4 extends the size effect law to fatigue fracture. Crack growth in geometrically
similar notched concrete specimens of various sizes, caused by load repetitions. has been

measured by means of the compliance method. It was found that Paris law is valid only




for specimens of one size or asymptotically for very large specimens. but is invalid when
specimens of different sizes are compared. However, a generalized form of Paris law. which
is combined with a size effect law known from monotonic fracture, was shown to agree with
test data quite well. The size-adjusted Paris law - a basic new result - gives the crack length

increment per cycle as a power function of the amplitude of a size-adjusted stress intensity

factor amplitude. The size adjustment is based on the 'rittleness number of the structure.
Appendix A5 presents application of the size ' .t method for the determination of
fracture characteristics of high strength concrete. |osts of geometrically similar fracture

specimens of different sizes revealed that the fracture properties of high strength concrete
are rather different from those of normal concretes. Increase of the concrete strength by
the factor of 2.6 was found to increase fracture toughness by only 25 percent, and at the
same time to decrease the effective fracture process; zone length by about 60 percent. This
causes that the brittleness number of a given structure made of high-strength concrete is
more than twice as large as that of the same structure made of normal concrete. This new
result represents an adverse feature which will need to be coped with in design.

Appendix A6 presents an application of the size effect method to the measurement of
fracture properties in mode III fracture (shear fracture). The test specimens were geometri-
cally similar cylinders with a circumferential notch, loaded in torsion. The mode III {racture
energy was found to be about three-times larger than the mode I (opening mode) fracture
energy, provided the normal force resultant across the fracture plane is zero: otherwise, the
fracture energy is very sensitive to the normal force value.

Finally, appendix A7 presents in simple terms the consequences of the size effect for the
design codes. The results of this project have shown that the formulas for brittle failures of
reinforced concrete structures in the existing design codes, which are based on plastic limit
analysis, need to be revised by incorporation of the size effect, which is ignored at present.
Experiments in which the diagonal shear failure loads of beams were measured on specimens
of different sizes, (with the size range 1:16) have confirmed that the size effect is indeed

significant from the designer’s viewpoint.




2. MICROMECHANICS STUDIES

After discussing the results obtained on the basis of experiments, dimensional analysts,
and asymptotic considerations, we will now describe the results obtained by micromechanics
analysis.

Although some researchers have attempted to analyze the mechanics of fracture by sub-
dividing the aggregate pieces as well as the mortar or cement matrix into many finite ele-
ments, in general this approach is only of limited usefulness due to preposterous demands
for computer time and storage. Much more effective, and for most purposes adequate, is a
simplified model of the microstructure in which the large aggregate pieces are considered as
rigid, randomly arranged particles with axial interactions which allow for elastic response
and interparticle cracking (softening). Such a model (which represents an adaptation of a
similar earlier model of Cundall for sands) is presented in Appendix Bl.

A method of random computer generation of a particle system meeting the prescribed
particle size distribution has been developed; see the simulations in 6.2 of B1. The particles
are assumed to be elastic, and the interparticle contact layers of the matrix are described
by a softening stress-strain relation corresponding to a prescribed microscopic interparticle
fracture energy. Both two and three-dimensional versions of the model are easy to program.
but the latter poses at present extremely large demands for computer time. The model is
shown to realistically simulate the spread of cracking and its localization.

With regard to the size effect, it has been shown that the random particle model correctly
exhibits the transitional size effect described by the size effect law and agrees quite well with
various experimental data. In this regard it should be noted that continuum models of the
classical, local type are inherently incapable of describing the size effect (this is of course
also true of finite element models based on a local continuum). Direct evaluation of fracture
energy for the material represented by random particle models on the basis of interparticle
forces is in general a difficult proposition since it is not clear which interparticle force work
should be counted. However it is shown that the size effect method can be used to determine

the fracture energy and the effective process zone lengths of the material represented by the
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random particle system quite well, and unambiguously.

Another aspect of the distributed cracking in materials such as concrete is examined in
Appendix B2, in which strain-softening damage due to distributed cracking is modeled by an
elastic continuum with a quasi-periodic array of cracks of regular spacing but varying sizes.
The strain due to cracking as well as the corresponding compliance are calculated analytically.
The cracked material is homogenized in such a manner that the microscopic continuum
strains satisfy exactly the condition of compatibility with the actual strains due to cracks.
and the microscopic continuum stress satisfies exactly the condition of work equivalence with
the actual stresses in the cracked material. The results show that. contrary to the existing
theories, the damage variable used in continuum damage mechanics should be nonlocal. while
the elastic part of the response should be local. The mathematical analysis also indicates
that, for this particular crack system, the nonlocal continuum damage should be considered
as a function of the spatial average of the cracking strain rather than its local value. This
partially confirms the nonlocal damage concept.

The fracture energy represents the complete area and the stress-displacement curve char-
acterizing the fracture process zone. This curve is very difficult to measure, only indirect
inferences can be made. Therefore, determination of the shape of the stress displacement
curve in the post-peak softening range needs to be aided by micromechanics analysis. Such
an analysis is presented in Appendix B3, in which again the fracture process zone is assumed
to consist of a two-dimensional array of circular cracks, in the initial stage, or circular lig-
aments, in the terminal stage of fracture. For both cases analytical solutions of the stress
displacement curve are obtained. The solutions are approximate but asymptotically exact
for very small cracks or very small ligaments. As an interesting result, the stress displace-
ment curve in the post-peak range is found to exhibit snapback instability characterized by
a maximum possible displacement value. Howevér, it is observed that the snapback might
be characteristic only of the elastic-fracture type of response, and might be suppressed by
frictional phenomena or the effect of inhomogeneities, which could not be considered in the

analytical solution.




The interactions between the sites of concentrated inelastic deformations in the mi-

crostructure are basically of two types:

(1) interactions at distance, and

(2) interactions between different orientations of the planes on which inelastic phenomena
take place.

The first type of interactions can be approximately characterized, on the macro-level,
by nonlocal continuum properties. If the continuum includes the nonlocal properties. the
stress-strain relation for the fracture process zone needs to reflect only interactions between
different orientations. This type of interactions is effectively described by the microplane
model, presented in Appendix B4.

This model, which essentially represents generalization and modification of the classical
slip theory of G.I. Taylor for plasticity of polycrystaline metals, can describe not only ten-
sile cracking but also the general nonlinear triaxial response in compression and shear. as
demonstrated by comparisons with experiments in B-4. In this approach, the constitutive
properties are characterized separately on planes of various orientations within the material.
called the microplanes (the original term in plasticity was “slip planes”). The advantage is
that on the microplanes there are only two stress and strain components and no tensorial
invariance requirements need to be observed. These requirements are satisfied automatically
by integration over all spatial directions. The microplane strains are assumed to be the
results components of the macroscopic strain tensor. The central assumption is that on the
microplane level the stress-strain diagrams for monotonic loading are path independent and
that all the path dependence on the macro level is due to unloading, which occurs selectively
on microplanes of different orientations. The microplane theory yie!ds the stiffness or com-
pliance matrix of the material, which in general can be non-symmetric, due to frictional and
dilatancy phenomena. Compared to previous macroscopic phenomenologic tensorial models,
the microplane model developed involves fewer free material parameters and can be more
easily adopted to tests triaxial test results. It has been shown that the model can represent

the existing triaxial test data as well as tensile fracture data very well; see Appendix B5.




The microplane model requires a relatively large number of computations to obtain the
stress tensor from the given strain tensor; one trades high computer time requirements for
conceptual simplicity and versatility. However, with rapid progress in computer capabilities,
these requirements are becoming quite manageable.

To obtain a more realistic picture of microcracking in the fracture process zone, and its
evolution during the ioading process, microscopic observations of cracks have been conducted.
There have been two basic objectives:

(1) To observe open microcracks as they exist under the load in the post-peak softening
regime, and
(2) To observe microcracks inside the specimen, not on its surface.

After the test, when the specimen is unloaded, most microcracks close. Consequently,
they cannot be easily seen, and their previous width under load cannot be determined. These
were serious limitations of all previous studies. Furthermore, microcracks have customarily
been observed on the specimen surface. But it is likely that the crack pattern on the surface is
quite different from that in the interior. Probably, the fracture process zone in the specimen
interior (e.g., in the middle of specimen thickness) is wider than on the surface because
of more restraints against localization. The surface layer of concrete inevitably contains a
lower proportion of aggregate than the specimen interior, and a higher percentage of mortar:
hence it is more homogeneous, which should promote localization. Another difference is due
to the effect of Poisson ratio. In the specimen interior, there are transverse normal stresses,
but not on the surface. This causes a reduced overall stiffness for the surface layer, and
also produces a complicated three-dimensional stress field, which in linear elastic fracture
mechanics is manifested by a three-dimensional singularity (whose exponent differs from 1/2
if the crack edge is normal to the surface).

To circumvent these limitations of previous studies, the following procedure has been

conceived:

(1) Impregnate the fracture specimens under load. in a deformed post-peak state. using a

resin with a fluorescent dye,




(2) Harden the resin by microwave heating while the specimen is under load (and thus the

cracks remain open)

(3) Unload the specimen, cut it, polish the surface of the cut, and observe the cracks filled

by hardened fluorescent resin under a microscope.

The experimental procedure, however, has turned out to be extremely difficult, tedious
and therefore costly. Due to funding limitations, this part of experimental work could not
vet be completed. Numerous types of specimens and methods of impregnation under load
have been tried. During the last of year of investigation a method which appears feasible
has finally been devised. The specimens are small compact tension specimens, of side 2 in.,
loaded by a wedge. All the wedge assembly must be made of a ceramic so as not to interfere
with the microwaves. The wedge system makes it possible to block the wedge and thus
keep the specimen deformed (and the microcracks open) while the specimen is moved to
the impregnation chamber. In the impregnation chamber, which was built to this purpose,
the specimen is first subjected to vacuum, and then to high pressure, while submerged in
a bath of low viscosity polymer. In this manner it has already been possible to impregnate
specimens successfully (an important point, difficult to achieve, is to impregnate not only
those cracks that are connected to the surface, but also isolated microcracks, with no conduit
to the surface - obviously the resin must pass through the fine pores of concrete). The method
now appears to work but, due to its time-consuming nature and high cost, proceeds slowly.
Fig. | shows the samples of some crack patterns observed in this manner, but no conclusions

can yet be drawn from the limited data obtained so far.
3. NONLOCAL CONTINUUM APPROACH

It has previously been amply demonstrated that the classical, local continuum formula-
tions, as well as their finite element implementations, cannot represent the transitional size
effect observed in concrete-like materials. The reason is that, in local models, the strain

softening always localizes to a region of zero volume, while in reality the size of this region,

10




representing the fracture process zone, is finite. The continuum model must include a math-
ematical device which limits localization to a zone of a certain finite, minimum size. Such a
localization limiter is automatically achieved by nonlocal continuum.

Appendix C1 presents a rather effective and general nonlocal continuum model which can
be implemented in large finite element programs. The model has been shown to avoid prob-
lems of convergence at mesh refinement and spurious mesh sensitivity, which are intractable
with the classical continuum approach. The model is a generalization of plasticity, in which
strain softening is characterized by degradation of the yield limit.

The key idea is to apply the nonlocal concept only to those parameters which cause the
softening or degradation while keeping the total strains local. Compared to the previously
advanced fully nonlocal (imbricate) continuum formulation, the new approach has advan-
tage that the stresses are subjected to the standard differential equations of equilibrium and
standard boundary or interface conditions, while in previous nonlocal formulations these
equations were of higher order and involved additional terms. Two-dimensional finite ele-
ment solutions of problems with several thousand degrees of freedom have been presented,
documenting convergence and efficacy of the nonlocal numerical model.

Another type of nonlocal model in which strain softening is due to degradation of stiffness
rather than degradation of the yield limit is presented in Appendix C2. This approach is more
realistic for concrete, but does not have the advantage that the finite element program can
be easily obtained by adapting a finite element program [or plasticity, as in the previous case.
The model in Appendix C2 generalizes the classical smeared cracking model for concrete,
which has previously been shown to exhibit spurious mesh sensitivity. The crack band
model for smeared cracking, developed previously, circumvents these deficiencies but is not
completely general and can exhibit shear locking and directional mesh bias.

In Appendix C2 it is shown that all these problems can be avoided by a nonlocal gen-
eralization, in which the damage that characterizes strain softening is considered to be a
function of the spatial average of the positive part or the maximum principal strain. Two

alternatives of the model are presented: (1) Smeared cracking whose direction is fixed when
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the cracks start to form, and (2) Smeared cracking whose orientation rotates with the maxi-
mum principal strain. Furthermore, fracture tests on specimens of various sizes are analyzed
by finite elements. It is shown that the model correctly reproduces the experimentally ob-
served size effect and agrees with the size effect law. Furthermore, orthogonal and slanted
meshes are shown to yield, for the same specimen, approximately the same cracking zones
and propagation directions. This confirms that mesh bias, which plagued previous models,
1s avoided.

A theoretically more consistent and fundamental approach to the degradation of stiffness
of the material is the continuum damage theory, originated by the works of Kachanov. Again,
this theory is incapable of representing the transitional size effect observed in concrete-like
materials, and its finite element representations exhibit spurious mesh sensitivity due to
unlimited localization and incorrect convergence when the mesh is refined. A nonlocal version
of the continuum damage theory, which avoids all these problems, is presented in Appendix
C3. The central idea is again to subject to nonlocal treatment only those variables that
control strain softening, and to treat the elastic part of response as local. In the continuum
damage theory, the only required modification is to replace the usual local damage energy
release rate with its spatial average over the representative volume of the material whose size
is a characteristic of the material (and roughly coincides with the width of the fracture process
zone). Avoidance of spurious mesh sensitivity and proper convergence are demonstrated by
numerical examples, including static strain softening in a bar, longitudinal wave propagation
in a strain softening material, and static layered finite element analysis of a beam.

The nonlocal models presented in Appendices C1-C3 are relatively simple but not com-
pletely realistic for concrete and similar materials, especially in the case of nonlinear triaxial
behavior. A more realistic model can be achieved by a nonlocal generalization of the mi-
croplane model, as presented in Appendix C4. The nonlocal concept is again applied only
to those microplane strain components that are associated with strain softening, and not to
those representing the elastic part of response. An effective numerical algorithm permitting

large loading steps is developed, applying the idea of exonential algorithms previously formu-
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lated for creep. Problems due to nonsymetry of the tangential stiffness matrix are avoided
by using the initial elastic stiffness matrix in the incremental force displacernent relations.
Numerical finite element results with the nonlocal microplane model demonstrate a correct
transitional size effect as observed in concrete and approximately described by the size effect
law.

Introduction of the nonlocal damage formulation requires answering certain fundamental
questions with regard to localization instabilities. These questions are addressed in Appendix
C5. It is shown that the energy dissipation and damage cannot localize into regions of
vanishing volume. The solution of the static strain localization instability in one dimension
is reduced to an integral equation constrained by inequalities. It is shown from this equation
that localization is controlled by the characteristic length of the material introduced in the
spatial averaging rule. The calculated static stability limits are close to those obtained in
the previous nonlocal studies, as well as to those obtained by the crack band model in
which the continuum is treated as local but the minimum size of the strain softening region
is prescribed as a localization limiter. Furthermore, the rate of convergence of static finite
element solutions with nonlocal damage is studied and is found to be of a power type, almost
quadratic. A smooth weight function of bell shape is found to yield an averaging operator
that gives superior convergence.

The basic material property that characterizes the nonlocal aspects in models of all types
is the characteristic length of the material. This length governs the minimum possible width
of a zone of strain softening damage or, from another viewpoint, the minimum possible spac-
ing of line cracks in discrete fracture models. A method of experimental determination of the
characteristic length is presented in Appendix C6. The basic idea is to compare the response
of two types of specimens, one in which the tensile softening damage remains distributed
and one in which it localizes. The latter type of specimen is an edge-notched tensile fracture
specimen, and the former type of specimen is of the same shape but without notches. Lo-
calization of strain softening damage is prevented by gluing to the specimen surface a layer

of parallel thin steel bars and by using a cross-section of a minimum possible thickness that
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can be cast with a given aggregate. The characteristic length is obtained as the ratio of
the fracture energy (the energy dissipated per unit area) to the energy dissipated per unit
volume. Evaluation of these energies from the tests of concrete indicated the characteristic
length to be about 2.7 times the maximum aggregate size. However, this ratio will no doubt

depend on the properties of the matrix and the interfaces, granulometry and other factors.
4. LOCALIZATION INSTABILITIES

Fracture of brittle heterogeneous materials that undergo cracking may be regarded as a
process of localization of damage or cracking into a small zone, called the fracture process
zone. The minimum possible size of the zone can be determined by stability analysis of
localization. Illuminating in this regard are the solutions of some simple prototype situations
such as localization of a field of homogeneous strain into a planar band of localized damage
or into ellipsoidal regions. Analytical solutions to such problems are presented in Appendices
D1-D3. These solutions describe vital aspects of the micromechanics of damage propagation.

In Appendix D1, the continuum is for the sake of simplicity considered as local but
localization of strain softening into a region of vanishing value is precluded by requiring that
the softening region, assumed to be in a state of homogeneous strain, must have a certain
minimum thickness that is a material property, related to the characteristic length. Exact
conditions of stability of an initially uniform strain field against localization are obtained for
the case of an infinite layer in which the strain localizes into an infinite band. This solution
generalizes a previous solution of Rudnicki and Rice, who treated localization into a band in
an infinite space rather than in a layer of finite thickness. Consideration of a finite thickness
is necessary for bringing to light the size effects. The localization problem is solved first
for small strain. Then a linearized incremental solution is obtained taking into account the
geometrical nonlinearity of strain. The stability condition (Eq. 13 in D1) is shown to depend
on the ratio of the layer thickness to the softening band thickness; hence the size effect. It is
found that if this ratio is not too large compared to 1, then the state of homogeneous strain

may be stable well into the softening range.
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Extending the study of localization in bands, Appendix D2 presents exact solutions for
localization of strain into an ellipsoidal region contained within an infinite solid. The solution
exploits Eshelby’s theorem for eigenstrains in elliptical inclusions in an infinite elastic solid.
The special cases of localization of strain into a spherical region in three dimensions and into a
circular region in two dimensions are solved for finite bodies — spheres in three dimensions and
circles in two dimensions. The solutions show that even if the body is infinite, the localization
instability cannot occur at the start of strain softening, i.e., at the state corresponding to
the peak of the stress strain diagram, but only later, when there is a finite negative strain
softening slope. If the size of the body relative to the size of the softening region is decreased
and the boundary is restrained, homogeneous strain softening remains stable into a larger
strain. It is also found that, generally, localizations into elongated ellipsoidal region occur
earlier, and the body in fact prefers to localize its strain into an infinite band. However,
localization in a band is possible only in infinite bodies. For a finite body, it is not possible
to satisfy the boundary conditions where the localization band runs into the boundary. In
such a case ellipsoidal localizations with an ellipsoidal region that is much smaller than the
dimension of the body represent a possible solution which approximately satisfies all the
boundary conditions because stress disturbances decay exponentially with a distance from
the ellipsoid.

The solutions to the localization instabilities can be used as checks for finite element
programs for strain softening.

The localization solutions in Appendix D2 are limited to isotropic material models. Ap-
pendix D3 extends the analytical solutions to more complex constitutive laws, particularly
to von Mises and Drucker-Prager plasticity with a degrading yield limit. It is shown how
the conditions of onset of localization instability depend on the aspect ratios of the ellipsoid,
and on the material properties, especially the friction angle and the dilatancy ratio. It is
also shown that violation of normality promotes localization.

The solutions in Appendices D1-D3 deal only with localization instabilities but not with

localization that happens as a bifurcation along a stable equilibrium path. That problem is
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treated  separately. It is shown that the bifurcation occurs as soon as the tangential
moduli matrix becomes singular — a condition that coincides with Hill's classical bifurcation
condition for localization into an infinite layer. It is shown that the bifurcation is normally of
Shanley type, occurring in absence of neutral equilibrium while the controlled displacements
at infinity increase. During a loading process in which the displacement increase is controiled
at infinity, this type of bifurcation precedes the loss of stability of equilibrium due to an
ellipsoidal localization mode. An exception, however, is the case when the tangential moduli
change suddenly (which can happen, e.g., when the slope of the stress-strain diagram is

discontinuous or when temperature is increased).
5. THERMODYNAMIC ANALYSIS OF STABLE PATH

In the analysis of static propagation of crack systems of damage zones in structures, one
typically encounters equilibrium paths with multiple bifurcations and loss of uniqueness.
Among the various possible post-bifﬁrcating path, it is by no means guaranteed that the
commonly used solution algorithms in finite element programs yield the correct path that
actually occur. To obtain the correct solution, a thermodynamically based stability analysis
of stable path is necessary. Such a theory is presented in Appendix E1. Stability of inelastic
structures is analyzed in general on the basis of the second law of thermodynamics, and
criteria for stable states as well as stable path are given. Novel results are the criteria in
Egs. 11-14 of E1, pertaining to the conditions or controlled displacements of controlled load
at isothermal or isentropic conditions. These criteria reduce the stability analysis as well as
the determination of the correct bifurcation path to the analysis of positive definiteness of
the surface of the internally produced entropy increment (see Eq. 4 and 7 in Appendix E1).

The conditions for stable path have been applied to determination of the evolution of
a system of interacting cracks. There are many problems where all the cracks in a crack
system can grow simultaneously, or one grows preferentially as the others close. The latter
behavior is an aspect of localization within the crack system. The conditions under which
such localizations of crack growth into a single crack happen in some typical simple crack

systems have been formulated in Appendix El.
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6. NUMERICAL AND ANALYTICAL STUDIES OF LOCALIZATION

Localization has been studied in the setting of viscoplastic materials by both analytical

and numerical methods. The major findings of this study are:

o

The size of the localization band depends on the imperfection in viscoplastic materials

(Appendix F1).

The size of the localization band in material models with localization limiters of gra-
dient or nonlocal type depends on the parameter governing the higher-order term or

the size of the nonlocal domain, respectively.

Finite element solutions with constant strain elements in which the imperfection is
introduced by weakening one element provide unstable (and hence physically unattain-

able) solutions (Appendix F2).

A spectral overlay method has been developed wherein the region near a localization
zone is treated by a spectral method, which provides the resolution needed to study

the structure of the strain field in multi-dimensional localization (Appendix F3).

The fact that the localization band is scaled by the size of the imperfection is particularly

interesting and significant since it indicates that even when a constitutive equation does not

possess an inherent length scale, in application to physical problems, a length scale is intro-

duced by the length scale of the imperfections. This also is in agreement with experiments

which usually exhibit significant scatter in the size and structure of localization zones.

The new numerical method is based on the spectral interpolant, but in contrast to the

spectral element method described, the finite element interpolants are not modified in this

scheme. Instead, the spectral approximation is superimposed on the finite element ap-

proximation over a spectral patch which is placed over the region of large gradients. The

boundaries of the spectral patch need not be coincident with the boundaries of the elements,

so that high gradients inclined at an arbitrary angle to the mesh can be treated. With a
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modest increase in the number of unknowns, it is possible to achieve striking resolution of
the strain fields in problems such as viscoplastic shear banding.

The method originates from a desire to combine the generality of the finite element
method with regard to complex shapes and boundary conditions with the infinite order
convergence of the spectral method. While spectral interpolants can be introduced into
finite elements in regions of high gradients, a tremendous number of unknowns is needed
to achieve good resolution when the high gradient is skewed in relation to the mesh. The
superposition technique described here enables one to orient the spectral resolution precisely
along the high gradient region, or in other words, exactly where it is needed.

Furthermore, in most problems in nature with high gradients, only a single component
becomes very large. We have taken advantage of this by using the spectral interpolant only
in one direction in the spectral patch.

A variational method was used to obtain the discretized equations. As a consequence,
it is only necessary that the spectral field vanish on its “long” boundaries. The continuity
of tractions and any inhomogeneous natural boundary conditions are then handled by the
finite element fields. Thus the method is easily applied to steep gradients which are skewed
relative to the sides of the finite element mesh.

The method was applied to the problems of shear banding in a tensile specimen with
several viscoplastic materials. The results show that the strain field is extremely localized
in a band of an order of 0.01 of a typical element size. Thus constant strain elements would
not be able to efficiently resolve the structure of this strain field. The shape of the localized

strain field depends highly on the imperfection used to trigger localization.
7. CONCLUSION

Not too long ago, strain softening has been <uusidered by mechanics theorists to be a
meaningless concept. Yet experimental work kept providing clear indications of the existence
of distributed damage and of various responses that could be explained only by strain soft-

ening. Therefore, in the past decade strain softening became the subject of serious studies.
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one of which has been the present study supported by AFOSR. As a result of this as well as
other studies, the problem of strain softening is at present understood quite we!ll although
not completely. It is known that strain softening as a material property must be associated
with some characteristic length of the material, that the mathematical treatment must in-
volve some type of localization limiter, that localization stabilities must be analyzed and
stable post bifurcation paths determined, and that attention must be paid to the size effects

- the principal consequence of strain softening from the practical viewpoint.
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Determination of Fracture Energy from Size Effect and

Brittleness Number

by Zden&k P. Bazant and Phillip A. Pfeiffer

A series of 1ests on the size effect due to blunt fracture is reported and
analyzed. It is proposed to define the fracture energy as the specific
energy required for crack growth in an infinitely large specimen.
Theoretically, this definition eliminates the effects of specimen size,
shape, and the type of loading on the fracture energy values. The
problem is to identify the correct size-effect law to be used for ex-
trapolation to infinite size. It is shown that Bakant's recentiy pro-
posed simple size-effect law is applicable for this purpose as an ap-
proximation. Indeed, very different types of specimens, including
three-point bent, edge-notched tension, and eccentric compression
‘specimens, are found to yield approximately the same fracture en-
ergy values. Furthermore, the R-curves caiculated from the size ef-
Jfect measured for various types of specimens are found to have ap-
proximately the same final asymptotic vaiues for very long crack
lengths, aithough they differ very much for short crack lengths. The
fracture energy values found from the size effect approximately agree
with the values of fracture energy for the crack band model when the
test resulits are fitted by finite elements. Applicability of Bakant’s
brittieness number, which indicates how close the behavior of speci-
men or structure of any geometry is to linear elastic fracture mechan-
ics and to plastic limit analysis, is validated by test results. Compari-
sons with Mode II shear fraciure tests are also reported.

Keywords: concretes; cracking (fracturing); crack propagation; dimensionai
analysis; emergy; finite element method; measurement; specimens; tests.

The fracture energy of concrete is a basic material
characteristic needed for a rational prediction of brittle
failures of concrete structures. The method of experi-
mental determination of concrete’s fracture energy, and
even its definition, has recently been the subject of in-
tensive debate. Although in principie the fracture en-
ergy as a material property should be a constant, and
its value should be independent of the method of mea-
surement, various test methods, specimen shapes, and
sizes yield very different results—sometimes differing
even by several hundred percent."”’

The crux of the matter is that the fracture of con-
crete, as well as brittle heterogeneous materials in gen-
eral, is not adequately described by the classical ideal;-
zation of a line crack with a sharp tip. In this idealiza-
tion, which has been introduced for fracture with small-

“scale yielding in metals,* the fracture process is as-
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sumed to be concentrated in a zone that is so small
compared to the body dimensions that it can be treated
as a point. In concrete, the fracture process takes place
over a relatively large fracture process zone whose size
is, for the usual laboratory specimens, of the same or-
der of magnitude as the size of the specimen itself. In
other words, concrete is a material characterized by
blunt fracture. The tip of the large visible crack is
blunted by a zone of microcracking that lies ahead of
the crack tip and is certainly rather long and possibly
also quite wide relative to the size of material inhomo-
geneities.

The material behavior in the fracture process zone
may be described by a strain-softening stress-strain re-
lation or, to some extent equivalently, by a stress-dis-
placement relation with softening that characterizes the
fracture process zone over its full width. These mathe-
matical models indicate that the fracture energy is not
the only controlling parameter and that the size and
shape of the fracture process zone as well as the shape
of the softening stress-strain diagram have a significant
influence. This is no doubt the source of difficulties
and raises a basic question: can the fracture energy, the
most important fracture characteristic of the material,
be defined and measured in a way that is unaffected by
the other influences?

The purpose of the paper is to show that this ques-
tion can be answered in the affirmative. The key is the
size effect——the simplest and most fundamental mani-
festation of the fracture mechanics aspect of failure. As
we will see, if geometrically similar specimens are con-
sidered and the failure load is correctly extrapolated to
a specimen of infinite size, the fracture energy obtained
must be unique and independent of specimen type, size,
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Fig. 1—Fraciure process zone for normal size labora-
tory specimens and for extrapolation to infinity

and shape because the fracture process zone in the limit
becomes vanishingly small compared to the specimen or
structure dimensions.

With this asymptotic approach, the argument is re-
duced to finding and applying the correct size-effect
law. Difficult as the precise answer to this question
might seem, satisfactory results may nevertheless be
achieved with an approximate size-effect law that was
recently derived by BaZant on the basis of dimensional
analysis and similitude arguments.*'s Bazant’s law was
approximately confirmed by comparisons with test data
from fracture specimens,'"'® as well as certain brittle
failures of concrete structures.'”? Due to its approxi-
mate nature, the applicability range of BaZant's law is
limited to a size range of perhaps 1:20, while for a
much larger size range, e.g., 1:200, 2 more accurate and
more complicated size-effect law would no doubt be
required.

Since determination of fracture energy is of interest
for finite element programs, we need to demonstrate
also that approximately the same values of fracture en-
ergy are obtained when the fracture energy value is op-
timized to achieve the best fit of fracture test data with
a finite element program.

DEFINITION OF FRACTURE ENERGY BY
INFINITE SIZE EXTRAPOLATION
The size effect can be isolated from other influences
if we consider geometrically similar specimens or struc-
tures. As mentioned, for normal-size fracture speci-
mens, the fracture process zone is of the same order of

464

magnitude as the specimen size (see Fig. 1). As already
established theoretically as well as experimentally, the
fracture process zone size is essentially determined by
the size of material inhomogeneities, ¢.g., the maxi-
mum aggregate size. Therefore, the fracture process
zone must become infinitely small compared to the
specimen if an extrapolation to an infinite size is made,
as shown in Fig. 1. (This in fact achieves conditions for
which the small-scale yielding approximation used for
metals®* becomes valid.) Furthermore, due to the
rather limited plasticity of concrete under tensile load-
ings, the hardening nonlinear zone surrounding the
fracture process zone in concrete is rather small, and
the boundary of the nonlinear zone lies very close to the
boundary of the fracture process zone (see Fig. 1). Un-
der this condition, the failure of an infinitely large
specimen must follow linear elastic fracture mechanics,
Based on this fact, it was shown'® (see Appendix) that
the fracture energy of concrete may be calculated as

_ & (a0)

G AE

1

in which £, = Young’s elastic modulus of concrete; A
= slope of the size effect regression plot for failure of
geometrically similar specimens of very different sizes,"
which will be explained later; and g{a,) = nondimen-
sional energy release rate calculated according to linear
elastic fracture mechanics, which is found for typical
specimen shapes in various handbooks and
textbooks®*#* and can always be easily determined by
linear elastic finite element analysis; o, = relative notch
length = a,/d where a, = notch length and d = cross-
section dimension.

Since the fracture energy is determined in this
method from the size-effect law, its value is, by defini-
tion, size independent. This overcomes the chief obsta-
cle of other methods, e.g., the RILEM work of frac-
ture method,** which are plagued by a strong depen-
dence of the measured values on the specimen size.
However, another question arises in the size-effect ap-
proach: are the G, values independent of the specimen
type or geometry?

They must be independent. When the structure is in-
finitely large and the fracture process zone as well as
the nonlinear zone are negligibly smail compared to the
specimen or structure size, nearly all the specimen is in
an elastic state. Now it is well known from classical
fracture mechanics that the asymptotic elastic stress-
strain field near the crack tip is the same regardiess of
specimen geometry and the type of loading. This field
is known to have the form g; = r=* ¢, (f) in which o,
= stress components, r = radial coordinate from the
crack tip, § = polar angle, and ¢, = certain functions
listed in textbooks.®® Therefore, the nonlinear zones in
infinitely large specimens of all types are exposed on
their entire boundary to exactly the same boundary
stresses. It follows (assuming uniqueness of response)
that the entire stress-strain field within the nonlinear
zone, including the fracture process zone, must be the

AC! Materials Journal / Nov..nber-December 1987




{a) \ Individual Tests 404 (d) o]
Y= AX+C
0.0 “qrength Criterion A= 0.5331
C= 2.080
-~ N 30
e J o © - Concrete ’E re® 0.9876
Q _02 ) wyix™ 0.118¢
- O - Mortar ~
= Size-Effect Law 7 < 204
< Ba= 0.9893 § ~
o Ap= 3.402 !
= -04 . X >
4 cg- 0.84in. 10 © - Conerete. d,20.8in
r‘- 183.3pm "'n_, O - Mortar, d.ro.lsm. -
-0.8 — [ T £
04 08 0.8 1.0 1.2 1.4 1.6 1.8 [} 10 20 30 40 30 80
log (d/da) X= d/da
4
(O] individual Tests td)
Y = AX+C
0.00 8 ﬁnn'tn Critertion A= 0.06340 “{:'j‘ a
— C= 1,063
=~ -008q ° o= 0.9728 o
a wy)x= 0.0808 A
~N 0.10 Size-Effect Law [} 8 1
= %197 bao.gess a S
~— o= 18.80 ° -}
s
o =034 cq* 0.84in.
= 10= 182.3pm 0~ Concrete. d, =0.5in.
-0.20 0~ Conerete a c O~ Mortar, d,=0.191n.
T~ Mortar P
-0.23 [}
0.4 0.8 0.8 1.0 1.2 1.4 1.6 o 10 20 30
log (d/da) X= d/da
(e) individual Tests 1040 g
0.0 Y = AX+C
. 2 Strenglh Criterion A= 0.1383
T~ -02 s, O bliripoet °
o 7O recy Lip o-Concrate | "2 c® 9
Q 'u,e ‘:.,, 5 ‘J vy 0.1252
oen Q- Mortar N
Z -0.4 4 4, byd
) Size-Effect Law / os )
a B= 1.977 [
S T981 = 1830 -
l cp* 0.044n. O - Concrete, d_=0.5in.
- 24
0.8 !?- 183.9pst O~ Mortar, d,~0.4%in.
-10 o K==
o4 08 0.8 L0 1.2 l.e 1.8 1.8 0 10 20 20 40 30 80

log (d/d.)

X =dAM,

Fig. 2—Size-effect plot (a, c, e) and linear-regression plot (b, d, f} constructed from
the maximum load values measured for three-point bent, edge-notched tension, and
eccentric compression specimens of concrete and mortar for various specimen sizes

same for all specimen types, and so the energy that is
dissipated in the fracture process zone per unit advance
of the crack tip must be unaffected by the specimen or
structure shape. Consequently, the following definition
of fracture energy must give unique results independent
of size as well as specimen type: The fracture energy G,
of a microscopically heterogeneous brittle material is
the specific energy required for crack growth in an in-
Sfinitely large specimen.

The extrapolation to infinite size and the asymptotic
considerations for the stress field could of course be
mathematicaily formulated by transformations of scale
in the formulation of the nonlinear boundary value
problem.

SIZE-EFFECT LAW

The fracture energy determination would be exact if
we knew the exact form of the size-effect law to be used
for extrapolation to infinite size. Unfortunately, we
know this law only approximately, and the question is
whether the approximate form is sufficiently accurate,
and if so, over what size range? The simplest form of
the size-effect law results from dimensional analysis and
similitude arguments''*" if it is assumed that either the
width or the length of the fracture process zone is a
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constant material property. This form is

e 2]

in which r = 1 according to the initial proposal,' o, =
nominal strength at failure = P/bd where P = the
maximum load, b = specimen thickness, and d =
characteristic dimension of the specimen or structure
(only geometrically similar specimens are considered):
S = strength parameter, which may be taken as the
direct tensile strength; d, = the maximum aggregate
size; and B,A\, = two empirical constants to be deter-
mined by fitting test results for geometrically similar
specimens of various sizes. Application of Eq. (2) to
various types of brittle failures in concrete structures
was demonstrated in References 17 through 22.

Note that for sufficiently small sizes d, the second
term in the bracket is negligible compared to 1. This
means that o, is proportional to the material strength or
vield limit, and this represents the failure condition of
plastic limit analysis, characterized by no size effect. In
the plot of log o, versus log d, this failure condition is
represented by a horizontal straight line [see Fig. 2(a)].
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Fig. 3—Specimen geometry and loading detail for (a)
three-point bent, (b) edge-notched tension, and (c) ec-
centric-compression specimens

As another limiting case when size d is extremely

large, the number 1 in the bracket is negligible com- -

pared to the second term, and then oy is proportional
to d~". This represents the strongest possible size effect
and corresponds to the classical linear elastic fracture
mechanics. In the plot of log o, versus log d, this lim-
iting case projects itself as a straight line of downward
slope - %. The plot of the size-effect law [Eq. (2)]
consists of a gradual transition between these two lim-
iting cases—plastic limit analysis for very small struc-
tures and linear elastic fracture mechanics for very large
structures. The limiting cases are known exactly, and
the question is the shape of the transition, which is the
purpose of Eq. (2).

The size-effect law in Eq. (2) results by dimensional
analysis from the hypothesis that the total energy re-
lease W of the structure caused by fracture is a func-
tion of: (1) the length a of the fracture, and (2) the area
nd, of the cracking zone, such that nd, = width of the
front of the cracking zone = constant (d, = maximum
aggregate size and 7 = 1 to 3 = empirical number).
The original derivation' was simplified by truncation of
the Taylor series expansion of a certain function. If this
truncation is not made, a more general size-effect law
is obtained'*"

ov=Bf (Ct' + 1 + Cit + Gt 3)
d,

+ C + .. .)'5 E=<;)'

in which B, C,, C,, Cy,. . ., r = empirical constants. In
practice, however, no case where this more general
form would be needed has yet been found. It appears,
and our analysis of test results will confirm it, that Eq.
(2) can fit quite well any existing data with r = 1. The
size range of the existing test data is at most 1:10.
Coefficient r might be needed for a broader size range,
but this would be meaningful only if the statistical
scatter were smaller than it normally is for concrete,
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since otherwise coefficient r cannot be determined un-
ambiguously. Note that Eq. (1) is valid only for r = 1;
for other r; see the Appendix.

Scatter-free values of maximum loads for geometri-
cally similar structures of different sizes can be gener-
ated with a finite element program based on fracture
mechanics. In Reference 13 it was shown that for a cer-
tain r-value, Eq. (2) can fit such results even if the size
range is as broad as 1:500. However, this range is much
broader than feasible to test in a laboratory and needed
in practice. Alternatively, scatter-free results can be
calculated for the line crack model of Hillerborg if the
method of Green’s function is used (private communi-
cation by Planas and Elices, June 1986). Such calcula-
tions, as well as similar calculations made by Rots,”*
Darwin, Hillerborg and others,? show that the re-
sponse in general, and the shape of the size-effect curve
in particular, are sensitive to the precise shape of the
softening stress-strain diagram or stress-displacement
diagram. Various possible shapes of this diagram yield
different extrapolations to infinite size. From the prac-
tical viewpoint, though, this fact does not seem to pose
a serious problem. We do not need to extrapolate to
infinity in the mathematically true sense of the word.
We need only to extrapolate to a specimen size that is
sufficiently larger than the fracture process zone, and
Eq. (1) seems sufficient for that.

Eq. (2), as well as Eq. (3), is valid for geometrically
similar structures of specimens made of the same ma-
terial. This implies the use of the same maximum ag-
gregate size d,. When d, is also variable, one needs to
introduce the following adjustment of strength'*!3.%

S =00 + Je/d) 4)
in which f? and ¢, are empirical constants.

TEST RESULTS

As already mentioned, the validity of fracture energy
determination through the size-effect law [Eq. (1)] re-
quires that different types of specimens must yield
roughly the same results if made from the same con-
crete. In the previous study'® where G, was first deter-
mined from the size effect, test resuits for only one
specimen type—the three-point bent specimen—were
used. Therefore, the testing has been expanded to in-
clude also other specimen types such as the double-
notched direct tension specimen sketched in Fig. 3(b)
and the eccentric compression specimen shown in Fig.
3(c).

Fig. 3(d) shows the stress distribution across the lig-
ament cross section drawn according to the bending
theory. Although such stress distributions are unrealis-
tic, they nevertheless reveal the great differences in the
type of loading for the ligament cross section. For the
notched tension specimen, the entire ligament is sub-
jected to tension, which causes the fracture process
zone to become very large. The opposite extreme is ob-
tained for the eccentric compression specimen, for
which the major part ~f the ligament is subjected to
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compression and only a small part to tension [Fig.
3(d)]. In this case, the compression ahead of the crack
that forms in the tensile zone prevents the fracture pro-
cess zone from becoming very large. The bent specimen
is a medium situation, in which roughly half of the
cross section is subjected to tension and haif to
compression, and the fracture process zone is of me-
dium size.

Thus we see that the choice of these three specimens
covers the entire broad range of possibilities for the
type of loading in the ligament cross section. Previ-
ously, rather different results for the fracture energy
have been found for these specimens when the conven-
tional methods were used.

Photographs of the test specimens are shown in Fig.
4(a), (b), and (c). Despite the very different types of
loading for the ligament cross section, it was possible to
use specimens of the same geometry except for the
notches. All the specimens were of the same external
shape as previously used in a shear fracture study.® The
cross sections of the specimens were rectangular, and
the length-to-depth ratio was 8:3 for all specimens (Fig.
3). The cross-sectional heights of the specimens were d
= 1.5, 3, 6, and 12 in. (38.1, 76.2, 152.4, and 304.8
mm) (see Fig. 3). The thickness of the bending and
compression specimens was b = 1.5 in. (38 mm) and
that of the tension specimens & = 0.75 (19 mm), as
shown in Fig. 3(b). For each specimen size and each
type, three specimens were produced.

These *l.ice specimens were from different batches;
however, from each baich of concrete or mortar one
specimen of each size was cast. Notches of depth d/6
and thickness of 0.1 in. (2.5 mm) (same thickness for
all specimaen sizes) were cut with a diamond saw into
the hardened specimens. The specimens were cast with
the side of depth d in a vertical position. The concrete
mix had a water-cement ratio of 0.6 and cement-sand-
gravel ratio of 1:2:2 (all by weight). The maximum
gravel size was d, = 0.5 in. (12.7 mm), and the maxi-
mum sand grain size was 0.19 in. (4.83 mm). Mineral-
ogically, the aggregate consisted of crushed limestone
and siliceous river sand. Aggregate and sand were air-
dried prior to mixing. Portland cement C 150, ASTM
Type I, with no admixtures, was used.

To get information on the effect of aggregate size, a
second series of specimens was made of mortar, whose
water-cement ratio was 0.5 and cement-sand ratio was
1:2. The same sand as for the concrete specimens was
used with the gravel omitted, and so the maximum ag-
gregate size was d, = 0.19 in. (4.83 mm). The water-ce-
ment ratio differed from that for concrete specimens to
achieve approximately the same workability.

To determine the strength, companion cylinders of 3
in. diameter (76.2 mm) and 6 in. length (152.4 mm)
were cast from each batch of concrete or mortar. After
the standard 28-day moist curing, the mean compres-
sion strength was f! = 4865 psi (33.5 MPa), with a
standard deviation (S.D.) = 550 psi (3.79 MPa) for the
concrete specimens and 6910 psi (47.6 MPa) with S.D.
= 207 psi (1.43 MPa) for the mortar specimens. Each
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Fig. 4(aj—Three-point bent specimen of 6-in. (152-mm)
depth

Fig. 4(b)—Edge-notched tension specimen of 6-in. (152-
mm) depth

of these values was determined from three cylinders for
each specimen type (see Table 1). The tensile strength
was estimated as f/ = 6 Jf psi and Young’s modulus
as E. = 57,000 Jf7 psi, with /7 in psi (1 psi = 6895
Pa).

The specimens were removed from their plywood
forms one day after casting and were subsequently
cured for 27 days (% 1 day) until the test in a moist
room of 95 percent relative humidity and 78 F (25.6 C)
temperature. All the specimens were tested in a 10-ton
(89-kN) [Fig. 4(b)] or 60-ton (534-kN) [Fig. 4(d)] servo-
controlled closed-loop MTS testing machine. The lab-
oratory environment had a relative humidity of about
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Fig. 4(c)—Eccentric-compression loadings specimen of
6-in. (152-mm) depth

Fig. 4(d)—Testing machine with 12-in. (305-mm)
compression specimen

65 percent and temperature of about 78 F (25.6 C), and
the specimens were exposed to this environment ap-
proximately three hours before the start of the test.
The loading for the three-point bent specimens, as
shown in Fig. 4(a), applied three concentrated loads on-
to the specimen—one load through a hinge and two
through rollers. The steel surfaces were carefully ma-
chined so as to minimize the friction of the rollers. The
eccentric compression specimens were loaded in a ver-
tical position by two hinges, as shown in Fig. 4(c). The
loads were applied through steel plates 0.5 in. (12.7
mm) thick and glued to the specimen. For the eccentric
compression specimens, the load was placed as close to
the specimen corner as feasible but not so close that the
specimen would fail by shearing off its corner rather
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Table 1—Measured compressive strengths and
estimated tensile strength and Young’s elastic
modulus for concrete and mortar, for all tests

Cylinder Individual tests, f; Medan |
for {psi) AP I AN B 8
loading I 2 3 psi psi ksi
Concrete:
Three-point bent 4798 | 4893 | S160 | 4950 | 422 , 4010
Notched tension 4100 | 4190 | 4358 | 4216 | 390 | 370!
Eccentric compression | 5218 | 5460 | 5610 | 5429 | 442 | 4200
Mortar:
Three-point bent 6952 | 7000 | 7114 | 7022 | 503 | 4776
Notched tension 6604 | 6638 | 6952 | 6731 | 492 | 4676
Eccentric compression { 6733 | 7003 | 7198 | 6978 | SOt | 4761

Note: 1 ksi = 1000 psi = 6.895 MPa.

than by cracking from the notch; by experimenting, the
minimum possible distance was found to be d/8.

A special loading grip was produced for the tensile
specimens. It consisted [Fig. 4(b) and 3(b)] of a set of
two aluminum plates compressed together by bolts.
Sheets of hard rubber of 1-mm thickness were placed
between the specimen surfaces and the plates to distrib-
ute the clamping evenly. The aluminum plates were de-
signed so they could provide grips for the specimens of
all the sizes. For the tension specimens the largest size
was omitted, i.e., only specimens of d = 1.5, 3, and 6
in. (38.1, 76.2, and 152.4 mm) were used. A universal
joint was provided at the top and bottom connections
to the testing machine to minimize in-plane and out-of-
plane bending effects. :

The specimens were loaded at constant displacement
rate. For each specimen size the displacement rate was
selected to achieve the maximum load in about §
min( = 30 sec).

ANALYSIS OF TEST RESULTS BY SIZE-EFFECT
LAW

The test results are plotted as the square and circular
data points in Fig. 2. The graphs of log o, versus log d,
nondimensionalized with respect to f/ and d,, are on
the left [Fig. 2(a), (¢), and (e)]. At the right [Fig. 2(b),
(d), and (f)], the same test results are shown in linear
regression plots, based on the fact that Eq. (2) can be
algebraically rearranged to a linear form. Instead of the
plot Y = 4X + Cwith X =4, Y =0¥ ,A =
C(\d,)", C = (B f))~¥, it is more convenient to use
the nondimensional plotof Y’ = 4'X' + C' in which

X' = (d/dy, Y = (f]/a, 6)]
C'=B* A" =C' \g = Af/¥d,

The vaiue of r = 1 is used in Fig. 2. If Eq. (2) was fol-
lowed exactly, the plot of Y’ versus X' should be a
straight line of slope A‘ and Y'-intercept C' (Fig. 2),
which is why the deviations from this line represent
statistical scatter. The plot of Y' versus X" has the ad-
vantage that one can apply linear statistical regression,
yielding the size-effect law [Eq. (2) and (5)] as the
regression line. The vertical deviations from the regres-
sion line may be characr~rized by the coefficient of
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Table 2—Optimum values obtained by (a) linear regression and by (b)

Levenberg-Marquardt aigorithm

C, i

psi? in. ' psi * G, Wypy | Wyas | Was Wy Wae
Loading Material | x 10-* x 10 Ib/in. %o %o %o %o o
a)
Three-point bent Concrete | 22,34 7.253 0.219 | 1090 5.56  6.81) 13.60 | 7.07
Notched tension Concrete | 6.450 0.9134 0.205 7891 3.42 1283 13.91 | 14.92
Eccentric compression | Concrete | 2.861 1.573 0.254 [13.14{ 521 | 7.02| 1760 | 7.25
Three-point bent Mortar | 4.759 10.94 0.122 | 9.51 | 7.11 | 4.14| 12.74 | 4.18
Notched tension Mortar 4.439 1.133 0.131 7.74 | 3.67 [ 10.22] 13.64 | 10.44
Eccentric compression | Mortar | 0.8600 2.726 0.129 | 11.28 | 6.60 | 4.81] 15.10 | 5.09
b)
Three-point bent Concrete | 17.75 8.269 0.192 113.15{4.04 | 7214 17.61 | 7.45
Notched tension Concrete | 6.501 0.8888 0.211 7.92| 3.41 {15.32] 13.97 {15.40
Eccentric compression | Concrete ! 3.337 1.435 0.279 [ 14.40| 4.68 { 8.43| 19.29 | 8.63
Three-point bent Mortar | 3.163 11.25 0.119 9.74 | 6.73 | 4.12| 13.04 | 4.16
Notched tension Mortar | 4.291 1.174 0.126 7.80] 3.62 | 9.95) 13.76 | 10.17
Eccentric compression | Mortar | 1.023 2.685 0.131 |11.3416.54 ) 491 15.19 | S.19

Note: 1 1b = 4.448 N, psi = 6.895 Pa.
Table 3—Results of least-square optimization when specimens with
concrete and mortar are analyzed simultaneously
G, G,
Concrete,| Mortar, Y
Loading C’ A’ 1b/in. b/in. | wn, Wiy w, w, W,

Three-point bent 2.880 [0.5331] 0.229 0.129 [0.118410.0982|0.0338 | 0.1283 | 0.0537
Notched tension 1.065 |0.0634] 0.210 0.118 |0.0806 | 0.0375 | 0.0597 | 0.1060 { 0.0728
Eccentric compression | 0.2559 | 0.1383 | 0.233 0.132 10.1252|0.0844 | 0.0309 [ 0.1356 | 0.0519

Note: G, = g, (a,) ﬁ'rd/A 'E

variation w,, and the correlation coefficient r., both
indicated in Fig. 2. The value of A4 in Eq. (1) represents
the slope of the regression line in the plot of Y = o5%
versus X = d’, and from Eq. (5) it is readily found that
A=A"f-vd;.

By plotting the test results for concrete specimens
and mortar specimens in the same diagram (Fig. 2), we
are able to extend the size range of the data. Due to this
fact, the plots are based on the generalized Eq. (2),
which includes the effect of maximum aggregate size
[Eq. (4)].

As for the value of exponent r, the overall optimum
was found to be 0.954. However, for r = 1 the coeffi-
cient of variation of the deviations was only slightly
larger. Therefore the value r = 1 is used for the sake
of simplicity in all the plots as well as the numerical ta-
bles below.

Numerically, the test results are summarized in Ta-
bles 2 and 3. Tables 2(a) and (b) show the statistical re-
sults in which the concrete specimens and monar spec-
imens are treated separately, i.e., Eq. (2) is used with-
out Eq. (4). Table 3 shows the statistical results when
the data for all concrete as well as mortar specimens are
reated collectively using both Eq. (2) and (4).

Table 2(a) shows the statistical results calculated sep-
arately for concrete specimens and mortar specimens
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and also separately for each specimen type. The optim-
ization, based on linear regression, minimizes the sum
LA(o5%) where A stands for the difference between the
measured value and the value according to the equa-
tion. The coefficient of variation of these deviations is
wyix. The table also lists the coefficient of variation
wnyx, Which refers to the deviations in terms of o,.

Another possibility is to optimize the fit in terms of
the deviations in o,, in which case the optimization
problem is nonlinear. The fits, however, can be easily
obtained with the standard computer library subrou-
tine based on the Levenberg-Marquardt algorithm. The
results are shown in Table 2(b).

The objective of our analysis is the value of G,,
which can Qe found by Eq. (1). Values of g (a,) for the
present three-point bent, notched tension, and eccen-
tric compression geometries are 6.37, 0.693, and 1.68,
respectively, as calculated by linear elastic finite ele-
ment analysis. The E, vaiue is listed in Table 1 for each
loading case for concrete and mortar. The G, values in
Table 2(a) for concrete, i.e., 0.219, 0.205, and 0.254 1b/
in. (38.4, 35.9, and 44.5 N/m), show statistical scatter
with a coefficient of variation of 11 percent. In Table
2(b), the resulting G, values for concrete for the three
specimen types are 0.192, 0.211, and 0.279 Ib/in. (33.6,
37.0, and 48.9 N/m), and their coefficient of variation
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Table 4—Measured maximum loads

Maximum load P, Mean
Depth d, b P,
Type of test in. 1 2 3 'b
Three-point bent
Concrete 1.5 405 408 417 410
3.0 677 706 711 698
6.0 990 | 1040 | 1096 1042
12.0 1738 | 1739 | 1773 1750
Mortar 1.5 456 508 543 502
3.0 703 752 777 744
6.0 1005 | 1059 | 1104 1056
12.0 1484 | 1582 | 1588 1551
Notched tension
Concrete 1.5 385 405 413 401
3.0 738 748 754 747
6.0 1242 | 1290 | 1382 1305
Mortar 1.5 445 459 475 460
3.0 768 786 830 795
6.0 1292 | 1353 | 1401 1348
Eccentric compression
Concrete 1.5 920 | 956 975 950
3.0 1604 | 1645 | 1746 1665
6.0 2500 | 2538 | 2791 2610
12.0 3695 | 3711 | 4189 3865
Mortar 1.5 936 972 | 1104 1004
3.0 1427 | 1458 | 1530 1472
6. 2156 | 2232 | 2272 2220
12.0 2992 | 3010 | 3308 3103

Note: | 1o = 4,448 N; | in. = 25.4 mm.

is 20 percent. We see that the optimization by linear
regression gives somewhat less scattered results, and
therefore we will prefer it from now on.

It is hard to decide whether the differences in the G,
values are purely random or whether they represent
systernatic differences between various specimen types.
By extending the size range of the tests, random scatter
can be minimized much more effectively than by in-
creasing the number of specimens. Due to the cost of
testing very large specimens, it has been decided to ex-
tend the size range in relative terms, i.e., in terms of
d/d,, by analyzing simultaneously the results for con-
crete and mortar specimens. The results of such statis-
tical analysis, based on minimizing again the sum TA
(05%), are shown in Table 3. In carrving out the statis-
tical regression, parameter ¢,, governing solely the ef-
fect of aggregate size, has been required to be the same
for all three specimen types; its value came out to be ¢,
= 0.64 in. (16.3 m). The coefficient of variation wy, in
Table 3 characterizes the deviations in terms of the var-
iable Y’ = [f° (1 + Jc,/d,)/a,})*, and the coefficient of
variation wy, characterizes the deviations in terms of
the variable Y = ¢,. In the absence of a direct tensile
test, the values of f; for concrete and mortar were es-
timated from the ACI formula f/ = f* = 64 where
f. = average compressive strength = 4865 psi (33.5
MPa) and 6910 psi (1,120 MPa) for concrete and mor-
tar, respectively. Then f° was determined so that the
sum of squares of the difference of f? (1 + Vc,/d.) -
J? for concrete and mortar be minimized; this yielded
O = 183.3 psi (1.26 MPa). Also, E. was estimated for
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concrete and mortar from ACI formula £, = 57,000
JfT as 3976 ksi (27.4 MPa) and 4738 ksi (32.7 MPa),
respectively.

The principal results in Table 3 are the G, values. For
concrete they are 0.229, 0.210, and 0.233 Ib/in. (40.1,
36.8, and 40.8 N/m), which gives the coefficient of
variation of 5.5 percent. We see that these results are
indeed less scattered than those obtained for the size
range of concrete specimens alone. For mortar, the G,
values are 0.129, 0.118, and 0.132 lb/in. (22.6, 20.7,
and 23.1 N/m), which give the coefficient of variation
of 5.8 percent. Since the extension of the range of rel-
ative sizes reduces the relative scatter of results, it ap-
pears that the scatter is probably indeed of random ori-
gin, rather than due to omission of some unknown sys-
tematic influence, so the three types of specimens
appear t0 give indeed approximately the same fracture
energy value. This is of course to be expected theoreti-
cally, but only if the correct size-effect law is known.
Thus we may conclude that Eq. (2) with Eq. (4), where
r = 1, seems to be an acceptable approximate form of
the size-effect law,

The measured maximum load values for all the indi-
vidual specimens from which the present results were
calculated are summarized in Table 4.

Our finding that the three fundamentally different
specimen types yield roughly the same fracture energy
is the principal result of the present study. Neverthe-
less, these results should eventually be subjected to a
closer scrutiny using a much broader size range (much
larger funds, of course, would also be needed).

It is interesting to determine the optimum fits of the
data under the restriction that the G, value be the same
for all three specimen types. For this purpose, Eq. (1)
with G, from Eq. (2) may be aigebraically rearranged to
the linear plot

Y" = X"/G, + C" )

in which Y" = 03%/gle), X" = d/E., and C" =
C/gAap)(with r = 1). Since for these variables the slope
of the regression line is G;' (Fig. 5) and the fracture
energy is a material constant independent of the speci-
men type, the test results for the three specimen types
should be fitted by regression lines with arbitrary ver-
tical intercepts but with the same slope. The test results
have been analyzed collectively for all the specimen
types under this restriction, and they are shown for
concrete and mortar in Fig. 5(a) and (b). Due to the
scatter of the test data apparent in these figures, we
cannot say that the test results prove that the siope (and
thus the fracture energy) is the same for all the three
specimen types; however, we must also admit that these
plots do not reveal any systematic deviation from the
constant common slope G;'. To illustrate the scatter
more clearly we may shift the data for each specimen
type vertically so that the regression lines coincide (the
shift being indicated by the vertical intercepts C, for
specimen types i = 1, 2, 3). The resulting plot is shown
in Fig. 5(c) and (d) for concrete and mortar, and it is
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Fig. 5—Plots demonstrating independence of fracture energy from specimen type,

(a, ¢} concrete and (b, d} mortar

seen again that although the large scatter prevents us
from concluding that all three specimen types yield the
same slope, no systematic deviations from a common
slope are apparent.

Comparing the size-effect plots in Fig. 2(a), (¢), and
(e), we may note that in the case of the eccentric
compression specimen the curve is quite close to the_
asymptote of slope — ¥4 for linear elastic fracture me-
chanics, while for the case of tension specimen the
curve is quite remote from this asymptote, and for the
three-point bent specimen an intermediate situation oc-
curs. From comparisons of these graphs, we may ob-
serve that the size range of the tension specimens would
have to be increased about 20 times to approach the
asymptote as closely as the compression specimen. Ob-
viously, the tension specimen is by far the best for ex-
ploring, with relatively small specimen sizes, the behav-
ior near the horizontal asymptote for the strength cri-
terion, and the eccentric compression specimen is best
for finding the linear fracture mechanics asymptote,
and through it the value of G,. What is the reason for
these differences in behavior?

It is the difference in the size of the fracture process
zone that causes these behavioral differences, as we will
demonstrate by simplified analysis as well as finite ele-
ments. The difference can be understood intuitively by
considering (according to the bending theory) linear-
ized stress distributions across the ligament as shown in
Fig. 3(d). Even though these stress distributions are no
doubt far from the real ones, they make it clear that for
the eccentric compression specimen the crack as it ex-
tends from the tension notch soon runs into a compres-
sion zone, and so the fracture process zone for the ec-
centric compression specimen can occupy only a small
fraction of the ligament. The smaller the relative size of
the fracture process zone, the closer the behavior

ACI Materials Journal / November-December 1987

should be to the limit of linear elastic fracture mechan-
ics. For the tension specimen, on the other hand, the
entire ligament is under tensile stress, and so nothing
prevents the fracture process zone from being as long as
the entire ligament itself. For such a large fracture pro-
cess zone, the behavior should be close to the strength
criterion limit, as corroborated by Fig. 2(c). For the
three-point bent specimen, the size of the fracture pro-
cess zone is also limited by the compression field of the
top side of the ligament [Fig. 3(d)], but the tension part
of the ligament is larger than it is for the eccentric
compression specimen, and so the fracture process zone
should be of medium length. This explains why the size-
effect plots for this type of specimens are intermediate
between the tension and eccentric compression speci-
mens of the same exterior dimensions.

It must be emphasized that the size-effect method
fails if the size range is insufficient compared to the
width of the scatter band of the test results. The rele-
vant data scatter is characterized by the standard de-
viation A4 of the regression line slope 4 and the corre-
sponding coefficient of variation w,, which are defined
as

Sa Synx
W, = a’ Sa = Sr v'rx_-—l (7)
where n is the number of all the data points in the lin-
ear regression, s, is the coefficient of variation of the X
values for all the points. and s, is the standard devia-
tion of the vertical deviations from the regression line.
The values of w, are listed in Tables 2 and 3.

If the size range were so narrow that it would be ap-
proximately equal to the width of the scatter band, the
data points would fill roughly a circular region (Fig. 6).

One could still obtain a unique regression line, but its
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Fig. 6—(a) Size-effect method is inapplicable when the size range is too small com-
pared to scatter; (b, c) size renge is sufficient

slope would be highly uncertain and could even come
out negative. To prevent this from happening, it is nec-
essary that the value of w, would not exceed about 0.1.
Even then, by testing very many specimens (large n) one
could make w, sufficiently low even when the daia
points fill roughly a circular region rather than an
elongated band. To prevent this from happening, one
needs to require further that, for any n, the value of
wnx/wy would not exceed about 0.15.

Obviously, if the test results are consistent, with a
low scatter, one can do with a narrower size range than
if the test results are highly scattered.

From w, one can approximately estimate the coeffi-
cient of variation wg, of the fracture energy G, =
g/ (a)/AE,. If G,is assumed to be perfectly correlated
to E, then w;, = w,. If G, is assumed to be uncorre-
lated to E. then, as a second-order approximation,
wg, = wg where wl = W} + wi and w; is the coeffi-
cient of variation of E. In reality one may expect
w, € wg, € wg.

It needs to be pointed out also that the size-effect
approach can be destroyed by other size effects. They-
may arise from diffusion phenomena, e.g., the heating
(and microcracking) caused by hydration heat, which
may be significant for very large specimens, or the
dryving of the specimen, which is more severe for thin-
ner or smaller specimens.

BRITTLENESS NUMBER

Our finding that the size-effect law yields approxi-
mately unique G, values regardless of size and geome-
try makes it meaningful to base on this law a nondi-
mensional characteristic’** that indicates whether the
behavior of a given specimen or structure is cioser to
limit analysis or to linear elastic fracture mechanics.
The relative structure size A = d/d, cannot serve as an
objective indicator of this behavior. This is clear from
the present tests. For A = 4, e.g., the behavior of the
tensile specimen is (according to Fig. 2) closer to plastic
limit analysis based on the tensile strength, while the
behavior of the eccentric compression specimen for A\
= 4 is closer to linear elastic fracture mechanics. An
objective indicator is the recently proposed BaZant's'**
brittieness number 3. It is defined as
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8= (®)

and can be calculated after A, has been determined
either experimentally or by finite element analysis. The
value of 8 = 1 indicates the relative size d/d, at the
point where the horizontal asymptote for the strength
criterion intersects the inclined straight-line asymptote
for the energy failure criterion of linear elastic fracture
mechanics (Fig. 2). So 8 = 1 represents the center of
the transition between these two elementary failure cri-
teria.

For 8 < 1, the behavior is closer to plastic limit
analysis, and for 8 > 1 it is closer to linear elastic frac-
ture mechanics. For 8 < 0.1, the plastic limit analysis
may be used as an approximation, and for 8 2> 10, lin-
ear elastic fracture mechanics may be used as an ap-
proximation. For 0.1 < 8 < 10, nonlinear fracture
analysis must be used.

To find the brittleness number, one needs to calcu-
late the coefficient A\,, which represents the value of
d/d, at the point of intersection of the horizontal
straight line and the inclined straight line in Fig. 2. The
inclined straight line is given by the equation o, =
[G,E/g,(ao)d)*, which is valid according to linear elas-
tic fracture mechanics for any two-dimensional struc-
ture. The horizontal line is given by the equation g, =
Bf! when coefficient B is obtained by plastic limit
analysis. By equating both expressions for ¢,, Bazant”
obtained the following expressions for the transition
value d, of the characteristic dimension d of the struc-
ture and of the corresponding transition value of the
relative structure size d/d,

G.E d,
- — e = =2 9
do j-',z Bz g/ (ao)‘ N d' ( )
Therefore®!
8 = Bg( );I-q (10)
= D" g/ la G,E.

Practical calculations may generally proceed as fol-
lows: First solve the structL-* by plastic limit analysis,
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which yields the value of B. Second, solve the structure
by linear elastic fracture mechanics, which yields the
value of g,. Third, calculate 8 from Eq. (10). This
method of calculating 8 requires no laboratory tests.
Alternatively of course, the brittieness number of a
certain type of structure of a given size can be deter-
mined by fitting the size-effect law either to test results
or to finite element results for ultimate loads of struc-
tures of similar geometry but sizes that differ from the
given size. (These finite element results must be based
on a softening stress-strain or stress-displacement rela-
tion.)

It must be emphasized that the value of B must be
calculated by plastic limit analysis rather than an al-
lowable elastic stress formula. For example, for an un-
reinforced beam of span L, rectangular cross section of
width b and net depth d in the middle, with concen-
trated load P at midspan, we have M. = PL/4 = f;
bd*/4 = plastic ultimate bending moment at midspan.
From this we get oy = P/bd =1 d/L or oy =Bf/
where B = d/L = constant (for geometrically similar
beams). It would be of course incorrect to use the elas-
tic formula M, = f; bd*/6 which would yield B = 2d/
3L.

The brittleness number can serve as a basic qualita-
tive indicator of the type of response. In this sense it is
in fact analogous to the nondimensional characteristics
used, e.g., in fluid mechanics, such as the Reynolds
number.

Some researchers have tried to characterize the ef-
fects of structure size on the qualitative fracture behav-
tor by means of some nondimensional combination of
G,, f/, and E.. This is, however, insufficient because
these parameters cannot reflect differences in structure
geometry. For example, Carpinteri®* characterized the
effect of structure size on its brittleness by the nondi-
mensional ratio s = G,/b f; and Hillerborg® by the
nondimensionai ratio of some structural dimension to
the characteristic length /, = E, G/f;?, defined in the
same manner as the size of the small-scale yielding zone
in metals.** However, these nondimensional ratios,
i.e., the Carpinteri’s and Hillerborg’s brittleness num-
bers, are abjective only for comparisons of different
sizes of structures of the same geometry. For the same
value of either Carpinteri’'s or Hillerborg’s brittleness
number, the failure of a structure of one geometry can
be quite brittle, i.e., close to linear elastic fracture me-
chanics, while the failure of a structure of another ge-
ometry can be quite ductile, i.e., close to limit analysis.

The effect of structure size on the brittleness of its
response is manifested not only in the maximum load
but also in the post-peak shape of the load-deflection
diagram. As graphically illustrated in Fig. 6 of Refer-
ence 15, the total deflection is a sum of the deflections
due to the fracture process zone and to elastic strains.
As the size is increased, the former remains about the
same while the latter increases, causing the post-peak
diagram to become steeper and steeper and eventually
reverse to a snapback-type load-deflection diagram that
is unstable under both load and displacement controls.
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R-CURVES FOR DIFFERENT SPECIMEN TYPES

According to classical linear elastic fracture mechan-
ics, the specific energy required for crack growth R is
constant and equal to the fracture energy G,. For ma-
terials that do not follow linear elastic, fracture me-
chanics, R varies with the length of crack extension
from the notch. This variation is described by the so-
called resistance or R-curve. When the R-curves were
first observed for ductile fracture of metals, it was
proposed®-** that the shape of the R-curve may be con-
sidered to be approximately a material property. For
concrete, this concept was introduced by Wecharatana
and Shah,” and further refined by BaZzant and Ce-
dolin.* Analysis of extensive test data from the litera-
ture showed that, as a crude approximation, the
R-curve may be considered unique for a certain limited
range of specimen geometries,* but it can be very dif-
ferent for some very different specimen geometries.'
Nevertheless, even though the R-curve is not a unique
material property in general, it represents a simple,
convenient way to reduce nonlinear fracture analysis to
a linear one.

For a specified specimen geometry and type of load-
ing, there is a one-to-one relationship between the size-
effect law and the R-curve.' If one is known, the other
can be easily calculated. The method described
previously' has been used to caiculate the correspond-
ing R-curves from the size-effect curves in Fig. 2. They
are shown in Fig. 7. Fig. 7(a) and (c) give the plots of
the specific energy required for crack growth R as a
function of the crack length ¢ measured from the
notch. Fig. 7(b) and (d) show (for the same crack
lengths c) the relative values defined as R for the given
specimen divided by R for the three-point bent speci-
men taken as a reference (by definition, for the three-
point bent specimen the relative values are all 1).

From Fig. 7 we may observe that for the three-point
bent specimens and the eccentric compression speci-
mens the R-curves are not too far apart. Therefore,
their mean could be used as a material property for a
crude approximation. For the tension specimen, how-
ever, the R-curve is very different. This proves that §
general the R-curve of concrete cannot be considered to
be a unique material property. This conclusion, how-
ever, does not apply to the asymptotic values.

The asymptotic vaiue of the R-curve (¢c— ) corre-
sponds to the limiting case of elastic fracture mechan-
ics and is determined by the straight-line asymptote of
slope — ' in Fig. 2. While the R-curves are very dif-
ferent for small crack lengths, the asymptotic values are
nearly the same, up to a reasonable scatter range that is
inevitable for a material such as concrete. This conclu-
sion, which is particularly conspicuous from the rela-
tive curves in Fig. 7(b) and (d), is a basic result of this
study. Since the final asymptotic value of the R-curve
represents the fracture energy G, as defined in this pa-
per, this conclusion agrees with the previous conclusion
that the fracture energies are approximately the same
for various specimen types, with a reasonable scatter
that appears to be random rather than systematic.
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Fig. 8—Extrapolation of R-curves with and without
size-effect law

With the help of the R-curves it may be explained
why the methods currently used to define and measure
the fracture energy do not lead to unique results and
exhibit a large spurious dependence on the specimen
size. These existing methods generally use the same
specimen geometry and dimensions (size) and rely on
measurements at various crack lengths or notch lengths.
The work of fracture method recently adopted by
RILEM? is of that type, as is the ASTM method for
the measurement of R-curve. Because the specimens are
of one size, the results correspond to a short segment of
the size-effect curve, which in turn corresponds to a
relatively short segment of the R-curve. This is so, even
if the measurements are done at various crack iengths
or various notch lengths, as demonstrated by finite ele-
ment resuits in Fig. 7 of Reference 16. Thus one ob-
tains for the R-curve a set of measured points occupy-
ing only a small part of the R-curve, as illustrated in
Fig. 8. Obviously, extrapolation to ¢c—~o from such
data for a limited size range is ambiguous. Due to in-
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evitable statistical scatter, the extrapolated dashed or
solid curves in Fig. 8 yield almost equally good fits of
the measured data. It must be concluded that the exist-
ing methods that do not use specimens of very differ-
ent sizes are inherently incapabie of giving consistent
results for the fracture energy as defined here. They
yield fracture energy values illustrated by the asymp-
tote of the dashed curves in Fig. 8, which are usabie in
the analysis of structures that are not much larger than
the specimens tested, but are inapplicable to structures
that are much larger.

These difficulties in determination of R-curve from
scattered data for a limited size range are further com-
pounded by the fact that the R-curve has to be deter-
mined as an envelope of a family of fracture equilib-
rium curves.'** When these curves are scattered, an en-
velope simply cannot be constructed.'®

FINITE ELEMENT ANALYSIS OF TEST RESULTS

The size effect in fracture can also be described by
finite elements.'*” By optimizing the material fracture
parameters so as to obtain the finite element fit of the
present test data, it is possible to obtain the fracture
energy. Is this result approximately the same as the
fracture energy value obtained directly from the size-
effect law?

To answer this question, the present test specimens
were analyzed by finite elements in exactly the same
manner as described on pages 302 to 303 of Reference
16. The analysis utilizes the crack band model with a
square mesh of four-node quadrilateral elements in the
fracture region. The fracture is simulated by a band of
cracking elements of a single-element width. The
cracking is described by gradual strain-softening in the
elements of the crack band. To explore the effect of the
shape of the stress-strain diagram for strain softening in
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the crack band, the analyses are carried out both for
linear softening [Fig. 9(a)], as in Reference 37, and for
strain-softening given as an exponential passing through
the same peak point [Fig. 9(b)]. The fracture energy in
this approach is given by the area under the uniaxial
tensile stress-strain diagram, mulitiplied by the width w,
of the crack band front. This width must be considered
to be a material property independent of the element
size and represents a certain small multiple of the ag-
gregate size. The finite element solutions are obtained
by step-by-step loading. They yield the maximum loads
to which the size-effect law can be matched.

The results of the finite element calculations are
compared with the direct analysis of test data by the
size-effect law in Table 5 and Fig. 10. The size-effect
law results ace listed in the first column for G, in Table
5. The finite element results obtained with linear and
exponential strain-softening are listed in the last two
columns of Table 5. These values were obtained by fit-
ting the size-effect law to the finite element results for
specimens of various sizes, and then matching the size-
effect law to the curve [Eq. (2)] that optimaily de-
scribes the test data. The fracture energy may then be
obtained either from the asymptotic slope for the size-
effect curve that fits the finite element results (Table 5),
or directly from the area under the stress-strain curve
(Fig. 9) considered in the finite element analysis, times
width w, (Table 6). For the three types of specimens
used, the results are given in the last two columns of
Table 5, separately for concrete and mortar. Since all
the specimens were cast from the same concrete, the G,
values from finite elements with linear softening were
forced to be the same for all the three types of tests
(0.230 lb/in. or 40.3 N/m). The exponential softening
is always introduced in such a manner that the areas
under the stress-strain diagram, and thus also G,, would
be the same as for linear strain softening. The resuits
for exponential strain softening (material parameters
given in Table 6) are different, but only marginally so,
and are close to the G, values calculated directly from
the size-effect law for each specimen type — for concrete
as well as mortar. Compare the columns of Table §.

Generally, the finite element calculations indicate
relatively good agreement between the G, values that
give optimum fits of the measured maximum loads by
the finite element program and those obtained by fit-
ting the size-effect law to the measured maximum loads
for various specimen sizes. The finite element results in
Fig. 10 are compared directly with the test data and the
size-effect law fits from Fig. 2 based on both the log
(an/f] ) versus log (d/d,) plot (a, ¢, and e) and the lin-
ear regression plot (b, d, and f). The finite element
meshes used to obtain these results are drawn in Fig.
11. The coefficient of variation wy., for the linear
regression plots is given for each loading case and for
both linear and exponential softening. Among these
fits, the best that one couid hope to obtain is the size-
effect law, which has an average coefficient of varia-
tion of Gyy = 0.11 where Gy = {[Ppx BPB) + Wi
(NT) + why (EC)})/3}"*; 3PB, NT, and EC stand for
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Fig. 9—Uniaxial stress-strain curves for (a) linear and
(b) exponential softening

Table 5—Comparison of tracture energy from
size-effect law and finite element results

Size-

effect Linear | Exponential

law G,, | softening | softening
Loading Material | Ib/in. | G, Ib/in. ! G, Ib/in.
Three-point bent Concrete | 0.229 0.230 0.249
Notched tension Concrete | 0.210 0.230 0.249
Eccentric compression | Concrete { 0.233 0.230 0.249
Three-point bent Mortar 0.129 0.130 0.141
Notched tension Mortar 0.118 0.130 0.141
Eccentric compression | Mortar 0.132 0.130 0.141

Table 6—Material constants for strain softening
used in finite element analysis

Softening AN E., we, G,

Behavior Material psi ksi in. Ib/in.
Linear Concrete 390.7 3976 1.85 0.230
Linear Mortar 519.7 4738 0.703 0.130
Exponential Concrete 390.7 3976 2.85 0.249
Exponential Mortar 519.7 4738 1.083 0.141

*w, = crack front width.

the three-point bent, notched tension, and eccentric
compression specimens, respectively. For linear soften-
ing @y, = 0.14 and for exponential softening w,, =
0.20. Linear softening seems to match the test data
somewhat better than exponential softening, for this
particular set of data.

The finite element crack band model can also be used
to obtain the R-curves.'s¥ The results of such calcula-
tions are shown in Fig. 12. The finite element R-curves
obtained for both linear and exponential softening fol-
low the general trend of the R-curves obtained by the
size-effect law from the measured maximum loads (Fig.
7). The linear softening seems 1o give a slightly better
agreement than the exponential softening when com-
pared to the R-curves deduced directly from the test
data.
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SHEAR FRACTURE (MODE 1))

All of our analysis thus far dealt with the opening
fracture mode (Mode ). According to test resuits in a
recent paper,” the size-effect law is also applicable to
shear fracture (Mode II). Shear fracture can be pro-
duced on the same specimen as used here for tension
and comyression, although with a different type of
loading, siiown in Reference 29. For this loading the
fracture energy for Mode II can be calculated from Eq.
(1) usin® 2, (y) = 2.93, as indicated by linear elastic
fracturc aechanics.*®* [n finite element modeling, the
crack band raodel is applicabie to shear fracture as
well, provided the smeared cracks within the finite ele-
ments are allowed to be inclined with regard to the
crack band, letting them form with the orientation nor-
mal to the maximum principal stress. The compression
stiffness and strain-softening of the concrete between
the cracks, ioaded in the direction parallel to the cracks,
is taken inio account.®

Tests o shear fracture, comparable with the pre-
ceding results, were conducted with the same type of
concrete. Therefore, the results for shear fracture are
also listed in Tables 7 and 8. The Mode II fracture en-
ergy G/ is found to be far larger than the Mode I frac-
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ture energy G, = G/. This may be explained by com-
pressional resistance to concrete between the cracks in
the inclined direction parallelito the cracks.® The size-
effect regression plots for Mode II are shown in Fig.
13(a) and (b) and the finite element results in Fig. 13(c)
and (d).

Recently, BaZant and Prat® applied the size-effect
law to Mode I1I fracture tests of cylindrical specimens
with circumferential notches, subjected to torsion, and
used again Eq. (1) to determine the Mode 111 fracture
energy of concrete.

CONCLUSIONS

1. Fracture energy of a brittle heterogeneous mate-
rial such as concrete may be defined as the specific en-
ergy required for fracture growth when the specimen or
structure size tends to infinity. In this definition the
fracture energy is a unique material property, indepen-
dent of specimen size, shape, and type of loading.

2. The foregoing definition reduces the problem to
the question as to which form of the size-effect law
should be used for extrapolating the test results to infi-
nite size. Although the exact size-effect law is not
known, the present test results indicate that Bazant's
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approximate size-effect law [Eq. (2)], with a correction
for the maximum aggregate size [Eq. (4)], may be ac-
ceptable for practical purposes.

3. When the present method is used, different types
of fracture specimens — such as the edge-notched ten-
sion specimen, three-point bent specimen, and notched
eccentric compression specimen — yield approximately
the same values of fracture energy. The observed scat-
ter range is about the same as the usual range of inevi-
table scatter for concrete. Thus, the present method of
defining and measuring the fracture energy appears to
be approximately independent of both the specimen size
and type — a goal not yet achieved with other meth-
ods.

4. Bazant’s'* brittleness number 3 [Eq. (8) and
(10)], based on the size-effect law, may be used as a
nondimensional characteristic of fracture similitude,
which indicates how close the structure behavior is to
linear elastic fracture mechanics or to limit analysis.
Bazant's brittleness number, in contrast to Carpinteri’s
or Hiilerborg’s, is independent of the shape of speci-
men or structure, and so it can be used to compare the
brittleness of structures of different shapes. For 8 <
0.1, the response of a structure of any shape is essen-
tially ductile and plastic limit analysis applies, for 8 >
10 it is essentially brittle and obeys linear elastic frac-
ture mechanics, and for 0.1 < 8 < 10 the brittle and
ductile responses mix and a nonlinear fracture analysis
is required.

5. R-curves for various specimen types, calculated on
the basis of the size effect from the maximum loads of
specimens of different sizes, are very different for short
crack lengths but approach a common asymptotic value
for large crack lengths.

6. The present test results can be described by the fi-
nite element crack band model. The fracture energy
values determined from the size effect approximately
agree with the fracture energy value used in the finite
element code, which represents the area under the ten-
sile stress-strain diagram multiplied by the width of the
cracking element at fracture front.
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APPENDIX — SIZE DEPENDENCE OF CRITICAL
STRESS INTENSITY FACTOR AND DERIVATION
OF EQ. (1)

The size-effect law [Eq. (2)] yields

ox = Bff \d/d) ford >> d, (11)

where d, = \d, and ¢, = P/bd. This must be equivalent to linear
elastic fracture mechanics, whose formulas, given for various speci-
men or structure geometries in textbook and handbooks,'# may al-
ways be written in the form

ov = [G/E /g lar)]” d" " (12)

for plane stress (for plane strain replace £ with £ = E/(1 - +%)
where v = Poisson’s ratio). Eq. (11) and (12) must be equivalent, and
equating them one gets

G =42 pring,  anyn a3

Then, noting that B [/ A, d, = A ' [Eq. (5)] one gets G, = g,
(a,)/(E.A""), and for r = | one has Eq. (1). A slightly different de-
rivation of Eq. (1) was originally given on p. 293 in Reference 16.
Expressing B/, from Eq. (13) and substituting for it in Eq. (2), one
may write the size-effect law in the aiternative form

0 = | S ] {1 + (ﬁﬂ (14)
"~ atawa, d,

which is based on fracture parameters G, and g, (a,) instead of plastic
limit analysis parameters f’ and B.

Eq. (12) may further be used to determine the effect of size on the
value of the critical stress intensity factor K., which is obtained when
fracture tests are evaluated according to linear elastic fracture me-
chanics. From Eg. (12), G, = 0.'g, (a,)d/E,. From this, using the well-
known® relation K.! = G, E, and substituting Eq. (2) for o,, BaZant”

obtained
gla)d )" drd, ).
K = {[l + (d/d(.)']"'} BYf, {————[l - (d/d,.)""'jK' (15)

where K* = Bf' (g, (a.)d,)” = limiting value of K. for d = . This
equation agrees well with the test data reported by Francois (Fig. 1
of Reference 39) and others.
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first-order global approximation of the deviations from linear elastic
fracture mechanics, independent of the type of the toughening mechanism
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the effective length of the process zone, and the effective crack-tip
opening displacement. It also yields the R-curve, which is geometry-
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shape-independent.
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I. Introduction

Various ceramics and ceramic composites exhibit toughening
mechanisms such as transformation [1-2], microcracking [2-4], crack
deflection and crack bridging [2, 4-10]. These mechanisms greatly elevate
the effective fracture toughness and endow the material with a pronounced
R-curve behavior. Fracture behavior of ceramics has been studied
intensely, however, one avenue of Iinquiry, which has met with great
success in global modeling of nonlinear fracture of other brittle
heterogeneous materials such as concrete, mortar and rock, has received
little attention in the studies of ceramics. It is the size effect in
fracture, which is most directly manifested in the values of the nominal
strength of geometrically similar fracture specimens of different sizes.
The size effect is the main practical consequence of fracture mechanics.
It must be taken into account in design, and it can also be exploited for
determining material fracture parameters merely from maximum load
measurements, which are easy to carry out.

The principal purpose of this paper is to apply to ceramics the
recent results on the size effect achieved in fracture studies of
concrete and rock, and to demonstrate the usefulness of a size effect law
(11] giving a first-order global approximation to the deviations from
linear elastic fractur: -echanics. For readers’ convenience, the paper
will also give a concise review of the basic results on the size effect
in fracture which appeared in a number of recent papers [11-20].
Furthermore, the existing results will be extended by presenting
statistical estimates of standard deviation and an effective method of

regression of test data on apparent fracture toughness of similar




specimens of different sizes.

Although the effect of structure size as well as geometry on the
strength and fracture toughness of ceramics has already been studied by a
number of researchers [([21-27], only one of the existing data, namely
those of McKinney and Rice (23], appear to have a sufficient size range
for determining fracture properties. These data, pertaining to one kind
of silicon dioxide and two kinds of silicon carbide, will be utilized in
the present study to lllustrage the identification of fracture
properties, and in particular, the determination of the R-curve. The fact
that the specimen size affects the measured (apparent) fracture toughness
values of ceramics has already been pointed out [23-25], but
determination of fracture parameters and the R-curve from the size effect
has apparently not yet been attempted in the study of ceramics.

It has often been thought that the R-curve behavior 1is important
only for the'ceramics in which the fracture process zone (including the
frontal and crack bridging zones) extends over many millimeters. But
everything is relative. What matters is the ratio of the structure size
to the inhomogeneity size (or more precisely, to the process zone size,
which 1is related to the texture, size and distribution of
inhomogeneities [28]). Thus, even an R-curve whose range is much less
than 1 mm can be important if the specimen is small enough.

A secondary purpose of this paper, intended to highlight the
relativity of scale, 1s to call attention to the similarity of fracture
between ceramics and concrete. In the literature on fracture of ceramics,

only a few studies [e.g. 5-6, 10] have referred to the extensive and




exploding literature on the fracture of concrete. Yet many of the
fracture problems of brittle heterogeneous materials with a pronounced
R-curve behavior have already been successfully tackled in the literature
on concrete. These advances have been driven principally by the needs of
finite element analysis, which has been widely practiced for concrete
because of the forbidding costs of real-size testing of certain
structures.

The essential difference between fracture of concrete and ceramics
is merely that of scale. In normal concrete, the typical maximum
aggregate size is 20 mm, in high strength concrete 10 mm, and in dam
concretes 80 mm or more (the corresponding fracture process zone lengths
are typically 100 mm, 10 mm and 1000 mm, respectively). In ceramics,
there are coarse-grained microstructures with grain size larger than 1 mm
as well as fine-grained microstructures with grain size less than S um
(the corresponding process zone lengths are roughly between 20 mm and 100
um). When the specimens of each material have the same cross section
size, the degree of brittleness observed in fracture behavior will be
vastly different. What matters, however, is the ratlio of the structure
size to the fracture process zone size. Thus, a concrete slab 400 mm in
thickness and a fine-grained ceramic wafer 1 mm in thickness are likely
to exhibit about the same type of fracture behavior, which is nonlinear
and transitional ©between linear elastic fracture mechanics and
plasticity. Practical applications necessitate extrapolations of scale -
in concrete often to much larger structures, while in ceramics for
electronic applications to much smaller structures. For both, knowledge

of the law governing the size effect 1ls essential, which is the principal




focus of this study.

The size effect that we are going to study is caused by the
differences between the energy release rates of small and large
structures. It is not a statistical size effect. The well-known Weibull-
type weakest link statistics ([22] governs the size effect in unnotched
structures failing at the initiation of the first macrocrack from a
microscopic flaw. But it plays only a minor role in notched fracture
specimens. So it does in unnotched structures that fall only after a
large stable crack or cracking zone has already formed [12]. Designs that
ensure such a type of falilure are enforced in concrete design codes by
the requirement that the maximum load must be much larger than the crack
initiation load. It may of course be appropriate to apply a similar
requirement for geramics. Such a requirement can be met, for example, by
providing proper steel reinforcement in concrete or'flber reinforcement

in ceramics.

[I. Size Effect Law and Its Consequences

The most important consequence of fracture mechanics is the effect
of size on the nomjnal stress at failure. To describe it, we consider
geometrically similar structures or specimens of different sizes (with
geometrically similar notches or initial cracks), and introduce for
two-dimensional (2D) or three-dimensional (3D) problems the nominal

stress at maximum load:

P P
u u
R {(for 2D) or oy = S, ;5 (for 3D) (1)
where Pu = maximum load (ultimate load), b = thickness of
5




two-dimensionally similar structures or specimens, same for all the
sizes, d = characteristic dimension of the structure or specimen, and
cn = coefficient introduced for convenience. For example, if d is the
depth of a simply supported beam of span L, the elastic formula for the

2

maximum bending stress is o, = 1.5 PuL/bd = cnPu/bd with ch = 1.5 L/d (=

N
constant 1if the structures are geometrically similar). Likewise, if the
plastic bending formula, oy = PuL/bd2 is wused, then c, = L/d (=

constant).

As 1s well known, plastic 1limit analysls, as well as elastic
analysis with an allowable stress criterion or any method of analysis
with a failure criterion based on stress or strain, exhibits no size
effect, i.e., geometrically similar structures of different sizes fail at
the same TN However, this 1is not true of fracture mechanics. Due to
similarity of stress fields in similar two-dimensional elastic structures
of différent sizes, the total potential energy of the structure must have

the form U = (0'2/22')bd2f(a) where ¢ = cnP/bd. P = load, f(a) is a

function of the relative crack length and depends on the shape of the

structure, a = a/d (a is the crack length), E’ = E for plane stress, E’

E/(l-vz) for plane strain, E = Young's modulus of elasticity, and v

Poisson’s ratio. Therefore, the energy release rate is G= -(8U/38a)/b

-(8U/3a)/bd = ~d(¢%/2E° )£’ («), from which:

2
G = E_gégl , KI = YGE” = Pk(e) (for 2D problems) (2)
E‘b“d bvd
where KI is the stress intensity factor, f’(a) = 48f(ax)/8a, g(a) =

-f'(a)ci/z. and k(a) = vg(a). It may be checked that, for all structure

shapes, the formulas for G or KI have the form of Eq. (2). The values of




k(a) can be obtained by linear elastic analysis, such as finite element
analysls, and for basic specimen geometries k(a) follows from the
formulas for the stress intensity factors found in handbooks (e.g. Tada
et al. [29] ).

For three-dimensional similarity, U = ds(cz/ZE')f(a) where o

cnP/dZ, and Gpd = -3U/3a = -(dU/3a)/d = -d2(0%/2E’)f’(a), where pd

length of the perimeter of the fracture front (p is a constant) and G

average energy release rate per unit length of the perimeter. Therefore,

2
G = E_§£§l , K| = VCE™ = Pk(a) (for 3D problems) (3)
E’pd / pda

In linear elastic fracture mechanics (LEFM), the size effect is very
simple: oy <:l-1/2 (from Eqs. 1-3). A deviation from this law is caused
by the existence of a finite, nonnegligible fracture process zone which
surrounds the tip of the macroscopic continuous crack (and is associated
with R-curve behavior).

The energy release rate, G, represents the energy flux into the
nonlinear zone at the crack tip from the surrounding material which is in
an elastic state. This definition of G coincides with Rice’'s J-integral
but is less general than that. In the line crack models with bridging
stresses, the J-integral, and thus also G, is equal to the area under the
curve of bridging stress vs. crack opening displacement (e.g. 4, 30]. The
J-integral gives the correct energy flux not only for integration
contours lying outside the nonlinear zone but also for those lying in the
hardening elasto-plastic part of the nonlinear zone, provided that 1) the

contour does not pass through the fracture process zone, defined as the

softening zone, and 2) that the unloading irreversibility is unimportant.

e




The reason that the contours passing through the fracture process zone
must be barred from the J-integral is that microcracking and other damage
in this zone dissipate energy. While in ductile fracture of metals the
fracture process zone (in which voids and microcracks nucleate, grow and
coalesce) 1is negligible in size compared to the nonlinear plastic-
hardening zone, in ceramics, rock and concrete the fracture process zone
is large while the plastic-hardening zone is negligible; see Fig. 1 taken
from Ref. 13.

In this study we will consider only specimens or structures in which
g’ (¢) > 0. In such struciures, said to be of positive geometry [31], the
process zone starts to evolve from zero size and then grows as the load
increases while remaining attached to the notch tip. If the structure is
not large, the process zone length is significant compared to the length

of the notch or initial crack, a,, and the equivalent crack length a =

0’

a.+c at fallure must be distinguished from a where ¢ = elastically

0 o’
equivalent length of the process zone. The crack length a is understood
to be the equivalent crack length in the sense of linear elastic fracture
mechanics (LEFM). The equivalent process zone length ¢ (Fig. 2) is
defined as the distance from the tip of the notch or c¢ritical crack to
the tip of the equivalent crack which gives, according to LEFM, the same
unloading compliance. The value of G is the energy release rate for the
equivalent linearly elastic crack.

Let e be the value of ¢ in an infinitely large structure (d 5 «) at
maximum load (which represents the limit of stability if the structure is
under load control rather than displacement control). Further, let Gf be
the the corresponding value of G required for crack growth at d + ». In




the limit of 4 » ®w, one has ¢/d » 0 and « » «. = a./d. Thus, in an

0 0
infinitely large specimen, the fracture process zone occupies only an
infinitesimal volume fraction of the body. Therefore, the entire body can
be treated as elastic. Consequently, the stress and displacement flelds
surrounding the process zone are the asymptotic elastic flelds. They are
known to be the same for any specimen geometry, and so the shape and size
of the fracture process zone must be the same. It follows that Gf and Cer
defined as the limits of G and ¢ for an inflinitely large specimen, are
independent of the specimen shape. Therefore, unambiguous definitions of
Gf and ce as fundamental material properties, independent of specimen
size and shape, can be given as follows {12,18]:

Gf and Ce
elastically equivalent length of the fracture process zone, respectively,

are the energy required for crack growth and the

in an infinitely large specimen.
This definition of fracture energy can be mathematically stated as
= 2 ’
Gf = lim Gc lim (KIC /E’) for d»> o , where Gc and KIc are the values of
G and K. [Eq. (2)], respectively, calculated from the measured peak load

I
Pu and the initial crack or notch length a, using LEFM equations. More
generally, Gf can be defined as the limit of J-integral for d 5 w.

The value of G required for fracture growth 1s basically determined
by the size of the process zone. Since the value of ¢ is also determined
by this size, the value of G for a growing crack may be assumed to be a
function of the corresponding value of ¢ (which serves as the basis of
the R-curve approach). The value of ¢ at P = Pu determines the value of «

and consequently the value of g(a) at failure, and so the ratio G/g(a) at

maximum load should be approximately equal to Gf/g(af). Therefore, G =




Gfg(a)/f(af). Now we may substitute this expression into Eq. (2), make
further the approximation g(a) = g(a0)+g'(a0)(af-ao) (from Taylor series

expansion assuming that g'(a0)>0). denoting a. = ao+cf/d and g’(ao) =

dg(ao)/da, and further set (from Eq. 1) Pi = (o‘Nbd/cn)2 and solve for oy

Thus we obtalin the following approximate size effect law:

, 1
o = c =C 2 (4)
N n g’(ao)cf + g(ao)d

This law may alternatively be written as [18]:

1
E‘'G =
T, = fl2 (s)
c.+d
f
where
Pu . g(ao)
‘fN=EV8 faoj ’ d=md (6)
7, = intrinsic (shape-independent) nominal stress at failure, and d =

N

intrinsic (shape-independent) size of the structure [18], which was also
introduced in a somewhat different context by Planas and Elices [31].

The quantity that makes d shape-independent 1is the ratio
g(ao)/g’(ao) {18], which has also been introduced for similar purposes by
Planas and Elices [31] and for other purposes by Horii et al. [32]. Since
the factor g(a)/g’(a) in Eq. (6) takes the specimen shape into account
only in an approximate way, the tests, whose results are used in

regressions according to Eq. (5), should preferably involve only
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geometrically similar specimens.

The size effect law has also been derived in two other ways: 1) by
the method of energy release zones, and 2) by dimensional analysis and
similitude arguments [11,12]); see Appendix. The latter derivation, which
is more general, is based on the hypothesis that the total energy AU
released due to crack formation is a function of both the initial crack

length a. and the size of the process zone in an infinitely large

0
specimen, which is a material property. This derivation yields the size

effect law in the original form proposed in Ref. 11:

Bf
u

o = , B

ala

(7)

o
Q
o

where fu is an arbitrary measure of material strength, B and do are two
empirical constants, and B is called brittleness number [12, 17]. Eq. (7)
is obtained both for two-dimensional and three-dimensional similarity
(12}. Eq. (7) 1is applicable not only to notched specimens but also to
unnotched structures provided that 1) a large stable crack develops
before the maximum load is reached, and 2) the cracks for similar
specimens of various sizes are geometrically similar (which has been
shown to be often true for concrete structures).

The size effect law in Eq. (7), giving the approximate relation of
oy to B8, is plotted in Fig. 3. For large B such as B>10, Eq. (7) gives
(with an error under 5%) the approximation oy = Bfuﬁ-hq, which 1is the
size effect exhibited by LEFM. For small 8 such as B<0.1, Eq. (7) ylelds
(again with an error under S%) oy = Bfu = constant, that is, there is no
size effect and the failure load is proportional to the strength of the

11




material. For 0.1<B<10, the size effect is transitional between plastic
limit analysis and LEFM. In this range, nonlinear fracture mechanics must
be employed. Overall, the choice of the method of analysis and the type

of failure are as follows [12]:

B <0.1 plastic limit analysis
0.1s8s10 nonlinear fracture mechanics (8)
B > 10 LEFM

As we see, the brittleness number (Eq. (7)) 1is capable of
characterizing the nature of failure regardless of structure geometry.
Other definitions of the brittleness number were proposed by Hillerborg
[33], Carpinteri ([34], Gogotsi et. al [35], and Homeny et. al [36], but
they do not represent absolute (shape-independent) measures of
brittleness. Also it may be noted that the basic shape of the
transitional size effect curve shown in Fig.3 was known prior to the
formulation of Eq.(7) and was graphically sketched, without any formula,
by various investigators, e.g. Walsh [37].

Eq. (7) has the same form as Eq. (4). But it should be noted that,
in the form of Eq. (4), both parameters are calculated solely from the
limiting case of infinite size. In general, this cannot be accurate for
very small sizes. For most practical applications, the form of Eq. (4)
can nevertheless be accepted. The values of Gf and cy can be calculated
from the size effect law parameters d0 and B in Eq. (7). Taking the limit

of Eq. (2) in which P = Pu = bda'N/cn , expressing o, from Eq. (7), and

N
noting that lim « = %, for d 5 o, one gets the formula [12]:
Bzfi
Gy = —— dyglay) (9)
ch E
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Note that Gf can be determined without calculating g’(ao). Furthermore,

from Eqs. (4) and (7) [18]:
. dog(ao)

£ % g lay (10)

c

The brittleness number, B8, may now be expressed as [18]:

3 8(40) d
B’q’m (11)

Note that the ratio d/cf is geometry dependent. Geometry independence is

achieved by the factor g(ao)/g'(ao). Another formula can be obtained by

expressing do from Eq. (9) and substituting it into B = d/do (Eq. 7).
This yields [12, 17]:
B%g(a,,) E‘G
B = —9— d = g_ ! = _—f (12)
2 2: d; ’ u - T2
n u

where lu 1s a material parameter with the dimension of length and d0
represents the transitional size which corresponds to the intersection of
the horizontal and inclined asymptotes 1n Fig. (3). and depends on
structure geometry. The ratilo d/t]Ll is geometry dependent, and geometry
independence of B8 is achleved by the factor (B/cn)zg(ao).

Since Eq. (12) involves the value of B that characterizes the limit
load of a smail structure, this equation is more accurate when B \is
small. On the other hand, Eq. (11) is more accurate when B is large since
it ignores B (which characterizes small structures) and is based solely

on c. and the LEFM function g(a) (see Appendix).

f

In view of the approximate nature of the size effect law in Eq. (7),
the infinite size needed to define Gf and e must not be interpreted

literally. In practice, the infinite size should be assumed as a size
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only one order of magnitude beyond the range for which the size effect
law has been calibrated by tests or otherwise.

The size effect law in Eq. (7) has been shown to agree quite well
with tests on concrete fracture specimens of different sizes and
geometries, including three-point bend specimens, centric tension
edge-notched specimens, eccentric compression specimens (17], and compact
tension specimens {38]. Various specimen shapes were shown to yield about

the same value of G, according to Eq.9. A good agreement was also

f
demonstrated for high strength concrete [20], various rocks [18,19] and
aluminum alloys ([16], and to some extent also ice [39]. The size effect
law in Eq. (7) was shown to also apply for Mode II [40] and Mode III [41]
fractures, and for double-punch compression fracture [42].

Some nonlinear fracture models utilize as a material parameter the
crack-tip opening displacement at the maximum load, ac. Using the
well-known LEFM expression for crack opening width, & = (81(1/15’)(5/21t)1/2
where s = distance from the crack tip, and setting s = Ces KI = KIf’ one

gets, for an equivalent elastic crack in an infinitely large specimen

(19, 31]:

8K, e
5, =—— {c, (13)
E'{2rn

This value can also be determined from the size effect law, after
obtaining from this law the values of e and KIf; KIf = VE'Gf (= the
value of apparent fracture toughness KIc for an infinitely large

specimen).

In conventional testing, the apparent fracture toughness, KIc , is




usually determined by methods of linear elastic fracture mechanics
without regard to the variations of the size of the fracture process

zone, as if a = % (a = ay ., c= 0) at failure. For that case, one gets

2

2 . 2 2 _
from Eq. (2) Gcs P“g(ao)/E b“d. Substituting Pu (chd/cn) =

(Bfubd/cn)zdo/(d+d°) and expressing Bfu by means of Gf from Eq. (9), one

gets from Egs. (5)- (7) and (11):

2 - d d B
G =1,d=G = = G
c N f d+d° f a¥cf f B+1

(14)

Since KIc = VEGC » the apparent fracture toughness is found to vary as

[17]:

- 3 172 g 12

K = T d = KIf[ a ] = KIf —1—:6—-] (15)
+C
f

The size effect law in the form of Eqs. (5), (7) or (15) has the

advantage that its parameters Gf (or KIf ) and Cp can be determined from

the measured peak loads Pu by linear regression {17-18], provided that a

sufficlent range of sizes is used, of course. Algebraic rearrangement of

Egs. (5) and (15) yields the linear plots:

Y=AX +C or Y = A’X’ + C’ (16)
in which
- 2 2 2
X=d, Y = 1/1:N , A= l/KIf . c cf/KIf (17)
x'=1/d, Y= 1/K% A= c /K2 c' = 1/K> (18)
’ Ic %1 If

Linear regression in each plot yields the slope A or A’ (and their

coefficients of variation w, and o ) of the regression line and its

A A’

vertical intercept C or C’ (and their coefficients of variations Ws and
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C')' from which the values of cf and KIf (as well as their coefficients

of variation Wor and Wers ) follow. The first plot [Eq. (17)}, however,

is preferable for calculation of KIf because its slope 1s independent of

W

Ces and normally the slope of a regression line is more accurate than the
intercept.

The fact that the size effect law is amenable to linear regression
makes 1t easy to obtain the statistics characterizing the uncertainty of

G., c., K and 8 . To calculate the coefficient of variation of K and
f f If c If

Ce » one may consider the regression of I/rs vs. d [Eq. (17)]. Because
KIf = A-]'/2 and ce = C/A, we have the approximations:
2 2,172
= a
Wgre wA/Z and W = (wA * ug ) (19)

where Wy O representing the coefficients of variation of slope A and
intercept C, are obtained by standard formulas of linear regression
statistics. These formulas are asymptotically exact if the distributions

of A and C are normal and Wy wo are very small. Similarly, if we

consider Eq. (18), we have the approximation:

2 2 172
= (w

At wc.)

W, (20)

K1 = wc,/Z and w

cf

Also, since Gf = K%f/E', the coefficient of variation of the fracture

energy can be approximated as:

y1/2 (21)

2 2
woe = (4o * “pr
These coefficlents of variation characterize not only the material

uncertainty but also the model uncertainty. It should be noted that they

depend strongly on the range of sizes. By increasing the range, one can
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decrease the coefficients of variation.

For certain specimen geometries, for example, the double cantilever
specimen, the center-cracked panel loaded on the crack, the
chevron-notched specimens [25], the indentation test (2, 26], and the
double-punch compression test ([42], g’(«) can be negative for a certain
initial range of a-values. In this case, which we so far excluded from

consideration, g(a) exhibits a minimum at a certain value, « , of the

min
relative crack length. The peak load for ideally brittle materials (which
have a zero-size fracture process zone) occurs when a equals the value of
[*4

or « whichever is larger. When g’(a) 1is negative, the crack

0 min’

propagation is more stable and easier to control than the tests in which
g’ (a¢) is positive. These observations have led various investigators to
expect the toughness value obtained from the peak load of a test where
g‘(ao) is initially negative to be size-independent, and therefore a true
material property. Later, however, several investigators observed from
this type of tests (25] that the calculated apparent fracture toughness
values are size-dependent, and that the equivalent relative crack length
at the peak load is also size-dependent and greater than both @ in and
@y

An alternative, widely used approach to study the nonlinear fracture
properties 1ls to test specimens of constant size but with various crack
or notch lengths [8, 24-27, 31, 36]. To get useful results, the size of
the specimen should be large with respect to microstructural
inhomogeneities as well as crack size. Some specimens with very small

cracks (flaws) must also be included in the test series. Cook et al.

[26-27] studied the effects of crack and grain sizes, using ceramic
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specimens with different fine grain sizes and with flaws created by
controlled indentation. Thelr study [26] shows in a different way the
transition from strength plateau to the LEFM-type size effect as the flaw
size increases. They emphasize that nonlinear behavior should be
considered in extrapolating macroscoplic crack test results to structures
with microscopic flaws. This is in a way similar to using the present
size effect law for extrapolating the results from test-size specimens to

smaller structures.

II1I. Geometry-Dependent R-Curve

The size of the process zone initlally grows as the load increases.
This causes an increase of the resistance R(c) to fracture growth,
representing the energy dissipated per unit specimen width and unit
length of advance of the equivalent LEFM crack (whose tip lies roughly in
the middle of the process zone). The fracture propagation condition may
be written as G = R(c). In the early works [(43-44], for the sake of
simplicity, the R-curve was assumed to be a material property. Later,
however, it was established that the R-curve depends on the specimen
shape [ e.g. Ref. 17]. As shown in Ref. 15, and refined in Ref. 18, the
R-curve for a specimen of given geometry can be calculated from the

material parameters obtained by the size effect method;

c
R(c) = Gf m E (22)

in which
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(23)

<
c

ain

8'(¢°) g(al)
e By (T (e ~ % * %) o @ =a;*

These equations define the R-curve parametrically. After determining Gf

and cf from the size effect law, a series of values of a, (which is here

1
a dummy variable) may be chosen, and for each of them the length ¢ of an
elastically equivalent (tractlion-free) crack calculated from Eq. (23),
and then R(c) determined from Eq. (22). If c is specified, @, may be
solved from Eq. (23) by Newton iterations and subsequently R(c) computed.
The dependence of the R-~curve obtained according to Eq. (22) on the
specimen geometry is introduced by the LEFM function g(a).

For readers’ convenience, the derivation of Eqs. (22) and (23) is
br;efly as follows [18]. The energy balance at fallure requires that
F(c,d) = G(«,d)-R(c) = O where a« = a/d = ¢0+c/d. If we change the size
slightly from d to d+3d but keep the geometric shape (i.e. @y =
constant), failure now occurs at c+3c, and since G = R or F = 0 must hold
also for c+dc, we must have 9F/3d = 0. Geometrically, the condition 8F/4d
= O together with F(c,d) = 0 means that the R-curve is the envelope of
the family of fracture equilibrium curves F(c,d) = 0 for various sizes d.
Because the R-curve is size-independent, we have dR/3d = 0 and so 4G/ad =
0. Now we may substitute Pi = (o'Nbd/cn)2 = (Bfubd/cn)z/(1+d/d0) where
(Bfu)2 = ciE'Gf/dog(ao) (according to Eq. (9)) into G = Pig(a)/E'bzd (Eq.

(2)). We thus obtailn for the critical states:

gla) d
G(a.d) = uf. 8-—(;'(')-5- -d-"'—d; (24)

2

Setting 8G/8d = 0, and noting that da/8d = da./3d + d(c/d)/8d = -c/d” =

0

-(a-ao)/d (because day/3d = 0 for geometrically similar structures), we
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get:

glx)
e @ (25)

ﬂ-'D-

0

Furthermore, substituting this, along with the relations (a-ao)d = ¢ and
do = cfg’(ao)/g(ao) [from Eq. (10)] into Eq. (2S), and setting G(«,d) =

R(c), Eq. (22) is proven. Furthermore, elimination of d and G_. from Eqs.

f
(25), (24) and (22), with G = R, ylields Eq. (23).
The dependence of the fracture toughness on ¢ (i.e. the R-curve of

fracture toughness) can be determined from the relation KIR = vE'R :

(26)

K. =K [k(a)k’(a)c ]1/2
IR "If k(aofk (ao)cf
To get better insight, we can obtain from Eqgs.(22) and (23) the

initial and terminal slopes of the R~-curve :

0 T S VR O %) [ 27)
3c |c=0 e g (a 5 dc c=c,
Here @ represents the limiting value of « as d » 0, which gives the

following condition, from which « may be solved:
g(am)
@ = a +-g—,-G;T (28)
The R-curve of Eq. (22) starts from zero, which means that the
process zone forms right at the beginning of loading and that there lis
never any singularity at the crack tip. This type of R-curve also ensues
from models in which crack bridging is the only toughening mechanism
[32].

Some models for composite materials consider the R-curve to start
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from some initial nonzero value [6, 30], interpreted as some small-scale
value of the fracture energy (or toughness) of the material. This kind of
R-curve implies that the crack tip can sustain, up to some value of KI, a
singular stress field without showing any damage, which is unreasonable.
Nevertheless, for some composite materials (especially fiber composites)
with fine-grained matrix, in which fibers or coarse particles create a
relatively large bridging zone, a non-zero initlial value of R-curve may
be practical, and may be explained by assuming that the matrix itself
will, on a smaller scale, exhibit a microscopic, relatively fast rising
R-curve.

Eq. (22) or (26) applies only as long as the fracture process zone
grows and remains attached to the notch tip, which is approximately up to
the peak load. For the post-peak regime, in which the fracture process
zone gets detached from the notch tip {19), the value of R does not
follow the R-curve [Eq. (22)] but must be kept constant and equal to the
. value of R at the peak load. This behavior was first introduced as a
hypothesis and was subsequently verified by comparisons of predicted load
deflection curves with measurements [19-20]. Without keeping the postpeak
value of R constant, close agreement could not be obtained.

Based on fracture tests, various investigators have found the
R-curves to depend on the size and geometry of the specimen as well as
the notch length [8-9, 16, 19-20]. Our preceding calculation of the R-curve
indicates that this phenomenon has principally two sources: 1) The effect
of g’(x) and g(a) which depend on specimen geometry [18], 2) The fact
that R deviates from the Eq. (22) after the peak load, as just explained.

Other minor effects, however, may contribute, too.
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It may also be noted that, according to some tests on ceramic

specimens [8-9], interaction of the process zone and the specimen
boundary can even lead to a falling R-curve after a plateau ls passed.
The declining end of the R-curve may correspond to shrinking of the
process zone as the end of ligament 1s approached; this would be
significant for specimens with very small uncracked ligaments and would

affect only the final part of the post-peak response.

IV. Application of the Size Effect Method to Ceramics

To demonstrate applicability of the size effect method, the test
results of McKinney and Rice [23] on slip-cast fused silicon dioxide
(5102) and on two types of silicon carbide (SiC) refractories have been
analyzed. The slip-cast fused silica used in these tests is a material

consisting 99% of S10,, with a relatively large porosity (12%). It has

20
the density 1900 kg/ms. grain size 10-20 um, and modulus of elasticity E
= 57.9 GPa. The silicon carbides used in these tests had the porosity of
15%, density 2600 kg/ma, and maximum grain size 2000 um. So these
ceramics, due to their grain structure, have a heterogeneity which may be
significant for small sizes. One of the silicon carbides tested, of the
type CN-137, consisted 78% of SIC, and 20% of 513N4, with modulus of
elasticity E =130 GPa. The other silicon carbide tested, of type CN-163,
consisted 85% of SiC and 13% of SiZONZ. and had a modulus of elasticity E
= 140 GPa.

All the test specimens were three-point-bend beams (see Fig.4).

Their dimensions and failure loads are given in Table I, in which L

beam span, d = beam depth (chosen as the characteristic dimension), b
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width, and a, = length of the notch cut at midspan, and Pu = fallure
load. The specimens were not geometrically similar exactly, but the
length of all the specimens was nearly four-times their depth.

As reported by the authors [23], the maximum loads of the slip-cast
fused silica specimens of sizes d = 5.1 mm and 6.5 mm exhibited an
unexplained drop, and therefore these results have been deleted from the
data base. It should also be mentioned that the successive groups of
smaller specimens were cut from the broken halves of the larger specimens
after their fracture. Since the larger specimens had only small stresses
at the crack location in the smaller, subsequently cut specimens, the
results should not have been affected appreciably.

The three-point-bend beam results may be analyzed on the basis of
Srawley’'s (29] approximation of function k(a) :

1.5LV@ 1.99-a(1l-a)(2.15-3. 93a+2. 7a’)

(29)
d (1+2a) (1-a)372

k(a) =

The linear regression plots based on Eq. (17) are shown in Fig. S. From
the linear regressions based on Eqs. (17) and (18), the values of G, and
e have been calculated and are listed in Table II. Aside from the linear

regression, the values of Gf and Ce have also been obtained by direct
nonlinear optimum fitting of Eqs. (5) and (15) to the test data, which
was accomplished by a standard 1library subroutine using Levenberg-
Marquardt algorithm for nonlinear optimization.

Table II also gives the coefficients of variation W, and Wy of the

vertical deviations of the test data from the regression lines with the

ordinates ™ and KIc’ respectively:
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2 2
L (tye = Ty PR /
= P Ne
Yz [ n-2 n (30)
172 -1/72
2 2
r K -K, ) TK
w = [ I;e- 5 Icp nIce (31)

where n = total number of specimens and subscripts e and p refer to the
experimental values [Eqs. (6) and (2)] and the corresponding predicted
values [Egs. (5) and (15)], respectively. The coefficients of variation
for the deviations (wt or uK) in the corresponding nonlinear regression
based on Eqs. (5) or (15) are, in all the cases, smaller. The reason is
that the objective functions of the optimization are different.

The values of Uere and w [(Eqs. (19) and (20)] are also shown in

cf

Table II. We see that although the values of fracture toughness K,_ for

1f

all optimization procedures are close, the results for the effective

fracture process zone length c,. show much greater dispersion and are

f

indicative only of the order of magnitude of Ce- Also it is seen that W ¢

is generally much larger than Were So the effective length of the
fracture process zone is much more uncertain than the fracture toughness.
This 1s probably not Just due to the modeling but is a natural property.

Evidently, c¢. 1s more sensitive to the range and scatter of the test

f

results than is KIf or Gf,

rock. However, a broader range of specimen sizes could be used to

same as observed previously for concrete and

determine ¢, more accurately. For the rest of the present paper, the

results of the nonlinear regression based on Eq. (5) will be used.

The ratio of Ce (Table II) to the grain size is found here to be a
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relatively large number (30 to 60} for 5102. Swanson et al. [5] have
measured the crack bridging zone length for alumina (with mean grain size
of 20 um, about the same as 5102), and found it to be about 100-times the
grain size. The spacing of the bridging grains was about 2 to 5 grain
size. Based on this observations, and considering that the fracture

process zone length is roughly 2c¢ the present value c. = 0.6 mm seems

£’ f
reasonable for 5102. Also note that the slip-cast fused silicon dioxide
used has a significant amount of porosity (23], which could help in
toughening by shielding of craék tip.

The effective critical crack-tip opening displacements, sc, as

calculated from Eq. (13) for SiO SiC(CN-137), and SIC(CN-163), are

2
0.97um, 34.54um, and 53.12um, respectively.

Fig. 6 gives the normalized values of the nominal stress at fallure
as a function of the brittleness number, 8, in logarithmic scales. These
plots indicate that the largest specimens of 8102 which were tested may
be considered to be sufficiently large for their behavior to approach
linear elastic fracture mechanics (this 1is also revealed by the
brittleness number range 8 = 1.5 to 10). For SIiC(CN-137) specimens, on
the other hand, the response is far from linear elastic fracture
mechanics and is actually closer to plastic limit analysis, as 1s clear
from Fig.6b as well as the range of the brittleness number, which was 8 =
0.06 to 0.25. The brittleness number range for SiC (CN-163) specimens was
B = 0.9 to 3.9 which is in nonlinear zone. In this regard it should be
noted that the actual specimen sizes for both SIiC materials CN-137 and

CN-163 were almost the same, although the ranges of thelir brittleness

numbers are very different. This {llustrates that one cannot really
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compare the apparent fracture toughness values measured on identical
specimens of different materials. Such comparisons should be based only
on the asymptotic values for the size approaching infinity, which can be
obtained only if the size effect law 1is known.

Fig.7 shows the values of the apparent fracture toughness KIc of
these ceramics as a function of the brittleness number, B, based on
Eq. (15). A trend similar to Eq. (15) can be observed in various other
experimental results [2S, 26, 38]. From Fig.7 one can observe that, in
contrast to the nominal strength values, the fracture toughness of the
CN-137 type of SiC is more size dependent than it is for the other two
ceramics tested, for the present size range. It means that, for this size
range, the behavior of the CN-137 type of SiC is farther from linear
elastic fracture mechanics than it is for the other two ceramics. By
comparing Figs. 6 and 7 with Table II, it can be seen that, for the case
when B8>1 for all the specimens, linear regression based on Eq. (17) is
not suitable (the case of SIOZ). The best test data are those which,
similar to the case of SIC of the type CN-163, include values for both
B<1 and B>1.

The foregoing results highlight the dependence of the conventional
values of fracture energy, fracture toughness, and effective process zone
length on the microstructure of materials, as already emphasized by some
researchers [26, 45-46]. It should be noted that, in order to allow
meaningful comparisons of fracture properties of ceramics with different
graln size and different microstructures, the specimens used should have
the same range of brittleness number rather than the same sizes. The size

effect tests based on the size effect law make such comparisons possible.
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Fig.8 shows the effect of the notch length on the apparent fracture
toughness of the three-point-bend specimens of different sizes, as
calculated on the basis of Eq. (15) for the present geometry. It may be
noticed from this figure that, for large sizes and for 0.1S < «, < 0.80,
the apparent fracture toughness appears to be nearly independent of the
notch length. In this kind of test, in which all the specimens have the
same size but various notch lengths, it is important that the range of g
values include values below 0.15; otherwise it 1is hardly possible to
detect the nonlinearity of fracture [26-27]). Fig. 8 also shows the
importance of the choice of specimen size in this kind of experiments.

Fig.9 shows the R-curves calculated from the size effect law
according to Eqgs. (22) and (23) for the present three-point-bend specimen
geometry and for different relative notch lengths. For each different
notch length, the R-curve is different, however the differences are
insignificant for notch lengths exceeding 0.33 of the beam depth. It
should be pointed out that for different types of fracture specimens,
such as eccentric compression specimens, tensile edge-notched specimens,
and compact tension specimens, the size effect method yields very
different R-curves [18].

The equivalent length of the fracture process zone can be compared

with the ligament length;

c a-a
a = = (32)
r d - ao 1 “O

Aside from a (Eq. (28)], the limiting values of a_ for d » 0, denoted as
« .. are plotted in Fig.10 as a function of Xy We see that, for @y >

0. 15, LI 0.24, and that the plot of @, vs. ag is a straight line.
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V. Calculation of Load-Deflection Curve from Size Effect

Knowing the R-curve, one can easily calculate the load-point
displacement, u (9, 19]. The complementary potential energy of the
structure is M'= C(a)P2/2 where C(a) = compliance at crack length a. The
energy release rate at constant P is G = (dl"/da)/b = Pz[dC(a)/da]/Zb.
Substituting Eq. (2) for G, one gets a differential equation for C(a).
Integration at constant P furnishes:

(+4

2
C(a) = CO + BE” I g(a’ )de’ (33)
0]

At the same time, from Eq. (2) for G = R [Eq. (22)]:

E’d .

P=5b m)R(C) N us= C(a)P (34)

Choosing various values of «, one can calculate the corresponding values
of P, C(a) and u. (For an alternative derivation based on Castigliano’
theorem, which is not as simple but is more instructive, see Ref. 47.)
Since there exist no pertinent size effect test data for ceramics,
we 1lllustrate the application of Egs. (33) and (34) by showing in Fig.11
the results for limestone [19], which behaves similar to ceramics. We see
that the measured load-displacement curve in Fig.11lb has been predicted
quite closely. The prediction was based solely on the measured maximum
loads of geometrically similar three-point-bend specimens whose sizes
ranged as 1:4. The size effect plot from which the material parameters
were determined is shown in Fig.l1la. An equally close agreement has been

achieved for high strength concrete with fine aggregate [20], which also
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behaves similar to ceramics.

Note that, conversely, by fitting the measured P(u) curve according
to Egs. (33) and (34), one can obtain estimates of the values of E’, Gf
and Cg-

The work of fracture [21, 48], wf, can be obtained from the area
under the P(u) curve, as well as from the area under the R(c) curve [9].
It may be noted that the value of average fracture energy af = wf/l where
¢ is the length of ligament [for three-point-bend specimens ¢ = (l-ao)d]
is in thls manner found to be strongly size-dependent as well as shape-
dependent [19-21, 38 and 49]. This shows that the work-of-fracture method
does not yleld unambiguous information on fracture energy, except if the

results are extrapolated to infinite size, as proposed by Planas and

Elices [49].

VI. Sensitivity of Fracture Properties to Micromechanics of Process Zone

As the foregoing theory illustrates, the size effect law yields, for
a given structure geometry, a certain unique shape of the R-curve. Vice
versa, from a measured R~-curve, one can calculate the size effect curve
¢N(d) (15]. Furthermore, from either the size effect law or from the
R-curve, one can calculate the corresponding relation vb(a) of bridging
traction o), VS. crack opening & in softening Dugdale-Barenblatt-type
models. Vice versa, from ¢b(6) one can calculate both the R-curve and the
size effect curve for a given geometry [31-33]. Thus, the size effect

law, the R-curve, and the wb(a)—curve. each of which can completely

characterize the fracture properties, are uniquely related to each other.
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All the aforementioned characterizations are sensitive to specimen
or ssructure geometry. However, the sensitivity of the size effect law
appears to be the least, and much less than that of the R-curve. This
transpired from the experimental results for concrete and rock [17-19],
which revealed that Eq. (7) works about equally well for very different
specimen geometries.

From the viewpoints of micromechanics and development of new,
tougher materials, there are of course great differences between various
tougﬁening mechanisms in ceramics, such as crack bridging, the dilatant
transformation toughening, or crack-~tip shielding by a microcracking zone
induced by material heterogeneity. The details of such mechanisms and the
microstructure properties which govern them influence, as is well known,
the effective vb(a) relation for c¢rack bridging. Likewise, they do
influence the shape of the size effect curve at least to some extent.

However, they are likely to influence the shape of the size effect
curve only insignificantly because the size effect law has by now been
shown to be applicable to materials of very different microstructures and
toughening mechanisms. The present approximate, two parameter form of the
size effect law in Eq. (7) suffices only for a global, first order
approximation to deviations from linear elastic fracture mechanics, which
is the sole object of interest here. The various possible mechanisms will
probably influence only the additional parameters of a more complicated
size effect law (see Appendix]. The only significant property which
matters from the present viewpoint of macroscopic nonlinear fracture
characterization is that there exists at the crack tip a process zone of

a finite, nonnegligible size, and that the maximum possible effective
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size cf of this zone is, in fracture situations, approximately a material
property. Knowledge of Ce cannot be used to distinguish between various

toughening mechanisms such as crack bridging or microcracking; rather, Ce

lumps their effects together.
The type of microstructure and the precise form of the toughening

mechanism in the process zone decide, of course, the values of Gf (or

£ They will have to be considered if the values of Gf and Ce

should be predicted from microstructure properties, rather than Just

KIf) and ¢

determined empirically, by the fitting of test data, as already
explained.

By various more detailed assumptions about the micromechanics of the
process zone, further information can be extracted from size effect
tests. Planas and Elices ([31] computed the relation between e and
certain other characteristics of the fracture process zone for crack
bridging models with various softening cb(s)-relations. For example, for
a linearly softening ¢b(8) relation, which is widely used because of its
simplicity and has the form of ¢

b
= ftaf/z. Planas and Elices obtained ¢

= ft(l - 6/6f) where @b(éf) = 0 and Gf
. 2
£ = 0. 420 EO' where 80 = E Gf/ft'

For the same relation, Horii et al. [32] calculated the maximum length
(for d 5 o ) of the fracture process zone to be lf = 0.732 to, from

which, according to the linear softening model, Cp = 0.573 Zf. For

wb(a)—curves with a long tail, the ratio tf/cf is larger, while the

bridging stresses closer to the initial notch are smaller.

By estimating lo from c,. for an assumed wb(a) relation, one can

f

calculate the local tensile strength as ft = (EZ'Gt./Eo)V2

It should be

noted that ft could also be estimated by proper plastic analysis of the
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structure for d » 0, which does not depend on the form of the ¢b(6)
relation. These two values for ft should be the same, which gives a
constraint that can help in identifying a realistic function for cb(a)
from a generalized size effect law with three parameters [see Egs. (AS)

and (A6) in the Appendix].
VII. Conclusions

1. The size effect law in Egqs. (4), (S5) and (7) gives a global
characterization of nonlinear fracture properties of ceramics with
toughening mechanics. It represents a first-orde- approximation to the
deviations from linear elastic fracture mechanics. Its form |is
independent of the detailed toughening mechanics, but knowledge of this
mechanism will be needed for predicting the size effect law parameters
rather than measuring them.

2. The size effect law provides a simple and unambiguous way to
determine from the maximum load data on geometrically similar specimens
of different sizes the values of: (1) the fracture energy, G. (or

f

fracture toughness, ), and (2) the effective length of the fracture

K1t
process zone, C.. From these, one can also further obtain other
parameters of the process zone such as the effective critical crack-tip
opening displacement, sc, as well as the R-curve, which is geometry
dependent. The material parameters can be identified by nonlinear
optimization as well as by 1linear regression. Knowing C;» one can
determine for the given structural geometry the brittleness number, which

characterizes the tvpe of fracture behavior of any specimen or structure.

3. Silicon carbide [SIC(CN-137)] beam specimens of cross section
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depths from 7 mm to 37 mm exhibit behavier that is closer to plastic
limit analysis than to linear elastic fracture mechanics (LEFM). On the
other hand, fracture behavior of the SiIC(CN-163) specimens of the same
sizes is transitional between plastic 1limit analysis and LEFM. The
behavior of slip~cast fused silica beam specimens of depths from S mm to

32 mm is closer to LEFM.

Appendix

Derivation of Size Effect Law by Dimensional Analysis. - The size

effect law for geometrically similar structures [(Eq. (7)] can be derived
most generally by dimensional analysis and similitude arguments [11] on
the basis of the following hypotheses: (I) The energy release of the
structure is a function of both: a) the length of fracture, a, and b) the

characteristic size of the fracture process zone, ¢ (II) The length a

£
at maximum load is not negligible compared to structure size d.
The total energy release due to fracture must be expressible in the

form:

¢ﬁbd2

=2

L’ and 62 are independent nondimensicnal parameters

(their number follows from Buckingham's theorem of dimensional analysis),

where o, = ¢ P /bd; ¢
N nu

and f is a certain function which may be expected to be smooth. From the

crack propagation condition dW/da = be we get:

(A2)

c, = =
a9

, -1
> 2E Gf af(ﬁl.ﬂz)
N d 1
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We now choose the state 02 = 0 (which corresponds to d » » ) as the

reference state, and expand af/aol into Taylor series about this state;

2 3
i.e. af/aol fo + fléz + fzoz + 5302 + ... where fo, fl'

constants if geometrically similar shapes (same 01) are considered.

are

Substitution of this series into Eq. (A2) and truncation of the series

after the linear term provides:

ZE'Gf 172
o, = D ——— a3 (A3)
N flcf + fod
‘ 172
This ylelds Eq. (7) if one denotes dy= flcf/fo and Bf = (2E Gf/flcf)
It may be noted that a more general size effect law, o =
Bfu(1+Br)_1/2r. with an additional parameter r [14], can be derived under

some less restrictive assumptions. However, fitting of test data for
concrete specimens of various geometries indicates the optimum value to
be r=1.

Energy Explanation of Size Effect Law. - It is instructive to give

also a simple energy explanation of the size effect. Consider the
uniformly stressed specimen of width d in Fig.12, in which a crack of
length ay with a fracture process zone of width h, propagates from the
left. The width h is a material property; h = KCp where k = constant. It
may be imagined that the formation of a crack band of thickness h reduces
to zero the strain energy density ¢§/ZE' in the cross hatched area. When
the crack extends by Aa, the additional strain energy that 1s reduced
comes from the densely cross-hatched strip of horizontal dimension Aa
(Fig.12). If the failure modes are geometrically similar, then the larger

the panel, the larger is the crack band at failure. Consequently, the

area of the densely cross-hatched strip is also larger; it equals hda +
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2kada where k = constant depending on the shape of the structure. This
illustrates that, for the same CN' a larger structure releases more
stored energy into the same extension Aa of the crack. But since the
energy that can be dissipated by the crack extension Aa is independent of
the structure size, the cN-value for a longer specimen must be smaller;

hence the size effect. To quantify this argument, the energy released

from the densely cross-hatched strip (per unit thickness) is :

2
a,
1 aW 1 N
G= B- 53 = E (hda + 2kaOAa) ZE—'v- Gf (A4)

Solving for oy one gets Eq. (7) with the notation do = h/Zkao, Bfu =

(ZE’Gf/h)V2 where a. = aO/d = constant.

0
Generalization of Size Effect Law. - Some test results [19] indicate

deviations from the size effect law for very small sizes. That there
might be some discrepancies for very small sizes is suggested by the fact
that there are two formulas for the brittleness number (Eqs. 11 and 12)
and two ways to get size effect parameters. One uses both the LEFM
characteristic G_. (pertinent to d » » ) and the plastic characteristic

f
Bfu (d 5 0). The other one only uses crack characteristics , G. and c. (d

f f
+ w). A simple empirical generalization, which makes an appreciable
difference only for sufficlently small sizes, can be introduced by
replacing Eq. (5) with:

E'G, 172 _ d + <y
Ty 2 . (AS)

c+d
in which 7, and d are deflned by Eq. (6), and its three parameters (E’Gy,

¢ co) can be obtained by nonlinear regression analysis of the test

f'

35




determines the location of the horizontal

= (E’Gf/co)lcz. Considering

data. The extra parameter, co,

asymptote (Fig. 13), which is given by TN
this horizontal asymptote and Eq. (6), and writing the plastic limit load
as P = c _bdf,, one obtains:

u P t

E'Gf 172 )
ft = 'T;_ , lo = cpg (ao)c0 (A6)

where cp depends on geometry and the material model used in plastic
analysis. Eq. (A6) enables estimating lo and ft only from size effect
test data. A broader range of test data would be needed to determine all
three parameters by regression. Short of that, ¢y can be determined if
the tensile strength, ft’ in the fracture process zone, representing the
maximum value of bridging stresses, 1is known or determined separately
from other types of tests (which is not an easy task).

Consider for example a very small three-point bend specimen (Fig.4),
to which plastic 1limit analysis can be applied. Since the compression
strength (in the brittle materials) is much larger than ft’ the stress

throughout the ligament is uniform and equal to f except at the top

¢
face which can sustain a large compression force. Thus, as d > w, the
bending moment 1n the ligament is Mu = ftb(d-ao)z/z, which yields Pu =
M /L = 2f, (1-a,)%bd%/L; then c, = P/bdf, = 2(1-¢,)%a/L. (Note that the
value of cp is twice (34] the value obtained by plastic analysis of a
beam with equal yleld stresses in tension and compression.)

By assuming a crack bridging model with a specific form for cb(é).

ft can be related to Ce (see Section VI), which means the three

parameters (E’Gf, ¢, and co) in Eq. (SA) cannot be independent. By

f

as an independent parameter, o and c. can be related as

accepting E'G £

f
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Sy = pcf where p will depend on the form of cb(a) and the geometry of the
structure. As an example, for the linear softening curve ¢b(6) for which

c. = 0.42080 (31], we obtain g = ¢ = 2.384/c§g’(a0) using Eq. (A6).

£ 3
Fig. 13 1s plotted for g = 0.211 which corresponds, for example, to a
three-point bend specimen with a linear softening curve, and with L/d = 4

0
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Basic Notations

Effective and initial crack lengths
Width of specimen

Effective process zone length, ¢ = a - a,
Limit of ¢ as d + @, a material parameter

Characteristic size (dimension) of specimen

Intrinsic size of structure, Eq. (6)

Modulus of elasticity

Local tensile strength in softening models, a material parameter
An arbitrary measure of strength

Apparent fracture energy

limit of Gc as size approaches to infinity, a material parameter
Apparent fracture toughness

Limit of KIc as d » o, a material parameter

Span of the beam

Ligament size

= E'Gf/f% , a material length parameter

Length of process zone

Maximum load

Resistance to crack growth (critical energy release rate)
Load-point displacement

Relative effective and initial crack lengths (= a/d, ao/d)
Brittleness number

Nominal stress at maximum load, Eq. (1)

Intrinsic nominal stress at maximum load, Eq. (6)
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Table I. Test Data of McKinney and Rice (1981)

Material d L ao Pu
(mm) (mm) {mm) (N)
31.7 25.2 127.0 7.2 489.3
31.7 25.4 127.0 6.3 627.2
25.6 25.5 101.6 4.0 609. 4
25.3 25.5 101.6 4.8 582.7
14.9 12.0 59.4 3.5 193.5
15.0 12.0 59.4 3.6 175.3
15.0 12. 4 $9.4 3.5 196.2
15.0 12.2 $9.4 3.3 195.7
11.6 11.7 46.7 1.9 200.2
SlO2 11.6 11.7 46.7 1.9 173.9
11.7 11.7 46.7 2.2 177.9
11.7 11.7 46.7 2.0 207.3
4.8 4.8 19.3 1.3 31.6
4.8 4.8 19.3 0.9 44.0
4.8 4.9 19.3 1.4 28.5
4.8 4.8 19.3 1.1 34.7
4.8 4.8 19.3 1.4 36.0
4.8 4.8 19.3 1.2 34.2
4.8 4.8 19.3 1.8 26.2
4.8 4.8 19.3 1.1 27.1
36.8 36.6 149. 4 4.8 6316.2
37.3 37.6 149. 4 4.8 9429. 8
sic 17.1 17.1 69.1 2.3 1610.2
CN-137 17.1 17.2 69.1 2.5 2090. 6
17.3 17.3 69.1 2.3 1934.9
7.2 7.2 28.7 1.3 282.4
7.2 7.2 28.7 1.5 342.5
7.2 7.2 28.7 1.6 275.8
7.2 7.2 28.7 1.5 291.3
36.6 37.3 149.4 4.8 3602.9
37.3 37.1 149. 4 4.8 3958.7
S1C 17.4 17.5 87.6 2.4 1178.7
N-167 17.0 16.5 67.6 2.4 1014.1
16.3 17.5 67.6 3.4 902.9
7.2 7.2 28.7 1.6 202.4
6.7 6.7 28.7 1.4 160.1
7.2 7.2 28.7 1.6 224.6
7.2 7.2 28.7 1.6 197.9




Table II. Results for Data of McKinney and Rice (1981)

Material| Objective K c w W, w
Fonction 183 £ + % X1f of

(MPavm) (mm) % % % %

Ty » EQ. S 0.71 0.61 12.1 10.6 - -

510, X;.» Eq.1S 0.68 0.45 12.2 10.4 - -
1/15 ,Eq. 17 0.63 0.12 13.8 11.5 4.1 200
1/K§C,Eq.18 0.70 0.63 12.3 10.7 8.9 42.0

Ty 9.64 21.33 13.9 16.1 - -

SiC 13 8.48 15.81 14.0 16.1 - -
CN-137 l/r; 7.61 13.04 14.3 16.5 49.6 102
1/1(‘;'c 11.71 34.71 14.2 16.3 178 360

Ty 2.33 1.36 5.3 4.7 - -

sic Ko 2.29 1.26 5.3 4.7 - -
1CN~-163 1/1; 2.26 1.18 5.4 4.7 3.7 21.1
1/K§c 2.33 1.39 5.3 4.7 7.0 23.0
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Titie no. 85-M32

Effect of Temperature and Humidity on Fracture Energy
of Concrete

by Zden&k P. Bazant and Pere C. =rat

Fracture experiments were conducted at temperatures from 20 (o 200
C (68 to 392 F) to determine the dependence of the Mode I fracture
energy of concrete on temperature as well as the specific water con-
tent. The fracture energy values were determined by testing geometri-
cally similar specimens of sizes in the ratio 1:2:4:8 and then applying
Ba2ant’s size effect law. Three-point bend specimens and eccentric
compression specimens are found to yield approximately the same
fracture energies, regardless of temperature. To describe the temper-
ature dependence of fracture energy, a recently derived simple for-
mula based on the activation energy theory (rate process theory) is
used and verified by test resuits. The temperature effect is deter-
mined both for concrete predried in an oven and for wet (saturated)
concrete. By interpolation, an approximate formula for the effect of
moisture content on fracture energy is also obtained. This effect is
found to be small at room temperature but large c: icmperatures close
to 100 C (212 F).

Keywords: concretes; cracking (fracturing); emergy: humidity: moisture con-
tent; temperature.

While heating in metals causes abrupt increases of
fracture toughness, due to britile-ductile transitions
which change the fracture mechanism, the fracture
toughness of purely brittle materials such as glass, ce-
ramics, graphite, and rocks is known to smoothly de-
crease with increasing temperature'?. For concrete, the
determination of the influence of temperature on the
fracture energy has been hampered by the fact that un-
til recently an unambiguous definition and method of
measurement of the fracture energy itself was unavail-
able. The basic classical measurement methods, such as
the work of fracture method proposed for concrete by
Hillerborg et al.** and adopted by The International
Union of Testing and Research Laboratories for Mate-
rials and Structures (RILEM) or the methods based on
compliance or crack opening displacement measure-
ments, have not been found to yield the same fracture
energy values when specimens of significantly different
sizes or shapes were used.

Recently, however, a fracture energy definition that
leads to unique values has been proposed.*'® The frac-
ture energy is the specific energy required for fracture
growth in an infinitely large specimen. This definition
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obviously requires knowledge of the size effect law
which has to be used to extrapolate the test results to
infinite size. Although the exact size effect law is un-
known, the approximate BaZant’s law'' has been found
to be sufficient in view of the inevitable statistical scat-
ter of concrete.5710.12:14

Measurements of concrete fracture energy based on
extrapolation to infinite size were made by BaZant,
Kim, and Pfeiffer.*'® Bazant and Pfeiffer'* experimen-
tally demonstrated that specimens of very different
types, including the three-point bend specimens, edge-
notched tensile specimens, and eccentric compression
specimens, yield approximately the same fracture en-
ergy values, as far as the typical scatter exhibited by
concrete permits one to discern. As for the effect of
specimens size on fracture energy, none can be present
due to the very nature of this fracture energy defini-
tion.

- The availability of a measurement method that vields
unique values of fracture energy makes it meaningful to
study various factors that influence fracture energy.
The objective of this study is to examine the effect of
temperature as well as the related effect of humidity.
The values of fracture energy need to be known to pre-
dict brittle failures of concrete structures on the basis of
fracture mechanics, which promises to give more accu-
rate resuits than the methods of limit analysis.

EXPERIMENTAL INVESTIGATION
The test specimens were beams of constant rectan-
gular cross section loaded at three points [Fig. 1(a)]. To
determine the size effect, geometrically similar speci-
mens of various depth d were used. The depths were d
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= 1.5,3,6, and 12 in. (38.1, 76.2, 152, and 305 mm),
while the thickness was b = 1.5 in. (38.1 mm) for all
the specimens. The length-to-depth ratio was L/d =
8:3 and the span-to-depth ratio was ¢/d = 2.5, for all
specimens. One notch of depth d/6 and thickness 0.1
in. (2.5 mm) (same for all specimens) was cut with a
diamond saw three weeks after the specimens were
stripped from the molds.

To check for a possible effect of specimen type, ad-
ditional specimens of the same shape were tested in ec-
centric compression. These specimens, which had two
symmetrical notches of depth d/6 and thickness 0.1 in.
(2.5 mm) {Fig. 1(b)l], included only specimen sizes d =
1.5, 3, and 6 in. (d = 12 in. would not fit the available
oven).

From each batch of concrete, one specimen of each
size as well as three control cylinders for compression
strength, 3 in. (152 mm) in diameter and 6 in. (305 mm)
in length, were cast. The means and standard devia-
tions of the compression strengths after 28 days of
moist curing are given in Table 1.

All specimens were cast with the side of depth 4 in
the vertical position, using a water-cement ratio of 0.6
and a cement-sand-gravel ratio of 1:2:2 (all by weight).
The maximum gravel size was d, = 0.5 in. (12.7 mm)
and the maximum sand grain size was 0.19 in. (4.8
mm). The aggregate consisted of crushed limestone and
siliceous Illinois beach sand (Lake Michigan). Portland
cement C 150 (ASTM Type I), with no admixtures and
no air-entraining agents, was used.

The fracture specimens were removed from the ply-
wood forms after one day and subsequently cured until
about 2 hr before the test in a moist room with 95 per-
cent humidity and a temperature of 25 C (77 F). Three
identical specimens were cast simultaneously from each
successive batch for each type of test. The age of the
specimens at the time of the test was 28 days, except for
the specimens tested in the hot water bath. For these,
the tests had to be postponed to the age of 41 days due
to certain scheduling problems.

The fracture tests were carried out at two types of
humidity conditions — dry and wet. The dry tests in-
cluded both the three-point loaded specimens and ec-
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Fig. 1—Test specimens used: (a) three-point bend spec-
imens; and (b) eccentric compression specimens

Table 1 — Compression strength of concrete (on
3 x 6-in. cylinders) in psi*

Mean Standard
Test series S? deviation s
3-point bend. dry, 20C 5550 36
3-point bend, dry, 65 C 5585 139
3-point bend, dry, 120 C 4975 90
3-point bend, dry, 200 C 5000 95
Eccentric compression, dry, 20C 5410 78
Eccentric compression, dry, 65 C 5250 59
Eccentric compression, dry, 120 C 5075 117
Eccentric compression, dry, 200 C 5075 90
3-point bend, wet, 65 C 5770 55
3-point bend, wet, 90 C! 5725 84

* | psi = 6895 Pa.
! Corrected for age; measured was /7 = 6035 psi, s = 58 psi at 41 days.
1 Corrected for age; measured was /; = 5990 psi, s = 88 psi at 41 days.

centric compression specimens. The temperatures in
these tests were 20 C (68 F), 65 C (149 F), 120 C (248
F), and 200 C (392 F). Each of the tests started with
preheating under no load in an oven. The temperature
in the oven was raised gradually over a period of about
1 hr to the temperature of 120 C, which was then kept
for 3 hr. The specime = were not sealed and may be ex-
pected to have lost all their evaporable water. After this
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Fig. 2—Arrangement of tests: (a) in an oven; and (b) in
a water bath

3 hr period, the temperature was gradually raised or
lowered at the average rate of about 50 C/hr (90 F/hr),
until the desired temperature of the fracture test was
reached. The specimen was then loaded to failure while
in the oven [Fig. 2(a)]. The loading shaft of the ma-
chine protruded through the wall of the oven, and the
thermal insulation around the shaft caused no appre-
ciable friction.

According to the linear heat conduction equation and
the known thermal diffusivity of concrete, it was cal-
culated that, after a sudden exposure to a different
constant temperature, not more than 1 hr is needed for
the temperature to become uniform within the speci-
men of thickness 1.5 in. (38.1 mm). Therefore, the
heating times used must have been sufficient. The heat-
ing time in the oven must have also sufficed, since a
uniformly dry state throughout the specimen thickness
was obtained. This is not only well known empirically
but is also justified by the measurements and theory in
Reference 16, in which it was found that the diffusivity
of moisture in concrete increases about 200 times when
the temperature exceeds 100 C (212 F).

Although concrete drying by heating in an oven has
been a standard practice in the investigations of creep
and other properties, this procedure might, neverthe-
less, cause some damage such as microcracking and,
thus, possibly affect the fracture test results. However,
the fact that after such drying, the fracture energy of
concrete becomes much higher than for a wet specimen
at the same elevated temperature suggests that possible
damage due to heating is probably not serious. The al-
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ternative to drying the specimens without heating is
hardly feasible. Simplified calculations showed that the
previously mentioned heating rates were slow enough to

-avoid development of high thermal stresses.

The wet tests included only three-point bend speci-
mens. Each test started by placing the specimens into a
water-filled tank (Fig. 2(b)] with the water at room
temperature. The temperature of the water in the tank
was raised gradually, at the rate of about 50 C/hr (90
F/hr), to the desired test temperature and was then kept
constant for 1 hr before the fracture test in water was
started.

The temperatures of the wet tests were 65 C (149 F)
and 90 C (194 F). No wet tests were conducted at room
temperature, since the response of wet specimens at
room temperature may be assumed to be the same as
that of previously tested unsealed and undried speci-
mens, loaded right after curing. This assumption is jus-
tified by the fact that at room temperature the mois-
ture diffusion is so slow that the environmental humid-
ity cannot affect the state of concrete in the bulk of the
specimen during the short time of exposure. At 120 C
(248 F), by contrast, the diffusivity of moisture in con-
crete is about 200 times higher than it is at 90 C (194
F), and about 3000 times higher than at 20 C (68 F).'
Therefore, the environmental relative humidity quickly
spreads through the entire specimen.

No wet tests could be carried out at temperatures
over 100 C (212 F), since the specimen could not be
kept wet unless a pressure chamber was used. How-
ever, this would represent a different type of test.

All the tests were carried out in a closed-loop MTS
machine. Only the maximum load values were needed
to calculate the fracture energies. The loading rate was
such that the time to failure was 3 to 5 min for all spec-
imens.

All the dry tests were performed under stroke-con-
trol at a constant displacement rate. For certain extra-
neous reasons, the wet specimens had to be tested un-
der load control; therefore, they failed right at the
maximum load. Impossible though load-controlled

'testing is for other types of fracture tests (e. g., RI-

LEM’s work of fracture test), it is nevertheless accept-
able for the present method since the post-peak re-
sponse is not needed to determine the fracture energy.
Theoretically, if the specimens exhibit high statistical
heterogeneity, load-controlled tests can yield a lower
maximum load than the displacement-controlled tests,
but, according to the analysis of BaZant and Panula,"”
the differences that may reasonably be expected in the
maximum load value are insignificant (under 3 per-
cent). On the other hand, if the objective were the post-
peak descending load-deflection curve, then load-con-
trolled tests would of course be impossible.

The measured maximum load values P are given in
Table 2 and the 28-day compression strengths f; for in-
dividual batches of concrete in Table 1. The 28-day f;
values for the wet tests were not directly measured but
were calculated from the compression strength f; (41)
measured at the time of these tests, at which the age of
concrete was 41 dovs. The adjustment for age was

ACl| Materials Journal / July-August 1988




based on the approximate formula'

SO = f128) (1 + 0.277log(¢/28))
from which f{ (28) = 0.956f] (41)

CALCULATION OF FRACTURE ENERGY FROM
SIZE EFFECT

The size effect is the most important difference of
fracture mechanics from the failure theories based on
plastic limit analysis. The size effect is understood as
the dependence of the nominal stress at failure o, on a
characteristic dimension of the specimen d when geo-
metrically similar specimens or structures are consid-
ered (o, = P/bd, where P = maximum load and b =
specimen thickness). For stress-based failure theories
such as the plastic limit analysis or elastic allowable
strength design, there is no size effect, i.e., gy is con-
stant. For classical linear elastic fracture mechanics, gy
~ d~*. Due to the influence of a relatively large mi-
crocracking zone that blunts the crack front in con-
crete, the size effect is intermediate between plasticity
and linear fracture mechanics and represents a transi-
tion from the former to the latter as the size is in-
creased. This transition may be approximately de-
scribed by Bazant’s size effect law:" oy = Bf; (1 + d/
Ad,)~* in which B, A; = empirical constants and d, =
maximum aggregate size. According to this law, the
plot of Y = (f//0,)* versus X = d/d, (relative size)
should be a straight line Y = AX + C, with C = 1/B?
and the slope A = C/\,. Thus, a linear regression of
the test results in the plot of Y versus X may be used to
determine A and C, from which the size effect law pa-
rameters may then be calculated as B = C~" and A\, =
C/A.

These regression plots also yield statistics of the er-
rors, i.e., the deviations of the measured data points
from the size effect law. The coefficient of variation,
defined as wyly = {[E(Y™ - Y)')/(N - 2)}*/Y where
Y ~ Y, are the vertical deviations of data points Y
from the regression line, N is the number of all the data
points, and ¥ = (£Y)/N = mean of all measured Y,
is given in Fig. 3, 4, and 5, as is the correlation coeffi-
cient r.

From the size effect law, it follows*™ that the frac-
ture energy G,, defined as the energy release rate re-
quired for crack growth in an infinitely large specimen,
may be calculated from the formula

G

G’"AE

Jid, )

in which ay = a,/d; a, = notch length; d = beam
depth; E. = modulus of elasticity of concrete; f; = di-
rect tensile strength of concrete; 4 = 1/(B*\)) = slope
of the regression line as already defined; g(a,) = non-
dimensional energy release rate of the specimen ac-
cording to the linear elastic fracture mechanics, which
can be found for the basic specimen geometries in
textbooks'* and handbooks,® and can be, in general,
determined by linear finite element analysis. For the
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Table 2 — Maximum loads at failure

Load at failure

’

Type of test

Depth, in.| 1 2 3 | Average P, b
Three-point bend 1.5 390 420 375 395
Dry, 20C 3.0 645] 690 675 70
6.0 990110351080 1035
12.0 1710]1689}1729 1709
Three-point bend 1.5 S1S| 375( 440 443
Dry, 65 C 3.0 715 565| 670 650
6.0 1090| 955/1155 1066
12.0 159511430} 1600 1542
Three-point bend 1.5 | 348! 384| 366 366
Dry, 120C 3.0 $30( 594 486 5§37
6.0 954) 840| 864 886
12.0 1296]1368(1332 1332
Three-point bend 1.5 304} 322 320 318
Dry, 200 C 3.0 540( 480 510 510
6.0 7921 744| 816 784
12.0 1180 1190|1200 1190
Eccentric compression 1.5 675| 665} 690 677
Dry,20C 3.0 1180111601 1260 1200
6.0 2040(2195) 1945 2060
Eccentric compression 1.5 855| 715{ 594 721
Dry, 65 C 3.0 12801 122311080 1194
6.0 2100{2010{ 1740 1950
Eccentric compression 1.5 740( 775| 680 732
Dry, 120C 3.0 1140(1240]| 1215 1198
6.0 1860|1920] 1720 1833
Eccentric compression 1.$ 648| 684 720 684
Dry, 200C .0 960| 9601 900 940
6.0 1545{1705)| 1625 1625
Three-point bend 1.5 342! 3901 408 380
Wet, 65 C 3.0 5451 546{ 586 559
6.0 811 780{ 732 774
12.0 125011205(1210 1222
Three-point bend 1.5 290( 350| 290 310
Wet, 90 C 3.0 560| 520( 575 552
6.0 640( 690{ 745 692
12.0 1055|1060} 1010 1042

lin. = 25.4 mm, | [b. = 4.448 N.

three-point specimens used, g(a) = 6.37, and for the
eccentric compression specimens, g(a,) = 1.68.

The tensile strength was not measured but was esti-
mated from the formula f; = 6(f )" wheref! and f’ are
in psi, f/ = compression strength. A possible error in
the f/-value, however, has no effect on G, since the A4-
value obtained by regression is proportional tof; ? if the
ordinate is taken as Y'=/£,%/c%.

Fig. 6 is a photograph of a typical set of specimens
of different sizes. Fig. 7 shows typical specimens in-
stalled in the heating oven, and Fig. 8 shows typical
specimens installed in the water bath.

The maximum loads measured are plotted in Fig. 3
through 5. The plots on the right demonstrate that the
measured o, agrees quite well with the size effect law,
which is shown as the solid curve. This agreement jus-
tifies the use of the size effect law. The plots on the left
show the linear regressions that yield the optimum val-
ues of parameters B and A,. The fracture energy values
calculated according to Eq. (1) from the Slopes 4 of
the regression lines given on the left of Fig. 3 through
§ are tabulated in Table 3.

Since the wet specimens had to be tested at the age of
41 days rather than 28 days, a correction for the age
difference became necessary. The fracture energy val-
ues were transformeu to 28 days according to BaZant
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Fig. 3—One set of three-point bend specimens tested

and Oh’s approximate formula® G, = (2.72 + 0.0214
f) fi* d,/E. The values in Tables 1 and 3 as well as
those plotted in the figures are all transformed to 28
days.

ACTIVATION ENERGY FORMULATION

It is generally accepted that fracture is a thermally
activated rate process. This means that the atomic bond
ruptures that constitute the mechanism of fracture are
provoked by the energies of thermal vibrations.? These
energies are statistically distributed, as described by
Maxwell distribution, and a rise in temperature in-
creases the probability (or frequency) that the atom’s
energy would exceed the activation energy barrier of the
bond. Therefore, a rise in temperature causes an in-
crease in the rate of growth of fracture, which gener-
ally follows a formula of the type @ = f(K) exp(- U/
RT),) where U = activation energy of bond rupture; R
= universal gas constant; T = absolute temperature; K
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= stress intensity factor; and f{lK) = empirical mono-
tonically increasing function. Recently, Evans® and
Thouless et al.® verified for certain ceramics a special
form of this formula
a = v (K/K)y e T ()
in which v, and n may be approximately considered as
constants characterizing the given material and X, =
critical value of K (fracture toughness). Since concrete
is a ceramic material, Eq. (2) may be expected to apply
also. This equation is not exact but approximate only,
for two reasons: 1) the proportionality of @ to K" is
empirical; and 2) more than one mechanism of atomic
bond rupture, with different activation energies, might
be involved, and the type of this mechanism might
change with temperature,
Due to the relations K = (GE,)* and K, = (G;E.)",
where G = rate of energy release from the structure
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into the fracture process zone,'"* Eq. (2) may be re-
written as

. G\"? U/l 1
ion(@ | -H3-7)] o

where 7, = chosen reference temperature (normally
T,=298 K) and G; = value of fracture energy G, at 7,.
With regard to the finite size of fracture process zone
in concrete, the relation X =(GE_)" might at first be
deemed inconsistent since it is based on linear elastic
fracture mechanics. It is nevertheless consistent since,
according to the size effect.law, G is defined as the
fracture energy of an infinitely large specimen, for
which linear elastic fracture mechanics does apply.

Eq. (2) or (3) may serve as the basic relation for
crack growth in time. Although the time-dependent
fracture description in terms of the crack growth rate is
no doubt physically more fundamental, the time-inde-
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pendent fracture description prevails in applications. In
fact, what is known as fracture mechanics is a time-in-
dependent theory. So, deduction of the consequences of
Eq. (2) for time-independent fracture description is
needed. This was done in Reference 8.

The choice of the reference temperature T, in Eq. (3)
is arbitrary. If temperature T is chosen as the reference
temperature, then according to Eq. (3) the crack growth
rate a at temperature 7 is simply expressed as

@ = v(G/G)"? )

(because 1/T, — 1/T = 0 in this case). G, represents
the fracture energy at temperature T, while G; is the
fracture energy at temperature T,.

The crack growth rate expressions referred to T, or to
7 must be equivalent. Equating the expressions in Eq.
(3) and (4), one obtains BaZant’s* approximate formula
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Fig. 6—One set of three-point bend specimens tested

G, = Gyexp (v/T - v/T,) )
in which
v = 2U/nR 6)

v is a constant characterizing the given material.

Eq. (5) allows a simple determination of material pa-
rameters since it may be written in the form Y = vX
+ bwhere Y =inGi X = I/T; b= InG; = v/T,.
So the values of v and b may be found as the slope and
the Y-intercept of the regression line in the plot of In G,
versus 1/T, and G} = exp(b+v/T,).

The values of activation energy U cannot be deter-
mined from the present types of experiments. Accord-
ing to Eq. (6), one would also need to determine expo-
nent n. This would require measuring the rate of
growth of the crack length at various load values.

The fracture energy values obtained experimentally at
various temperatures are piotted in Fig. 9(b) as the data
points. The linear regression plot, shown in Fig. 9(a),
demonstrates that the present test results indeed fall
quite close to a straight line in this plot. This confirms
the validity of Eq. (5). The diagram on Fig. 9(b) shows
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the curves of Eq. (5) plotted for the optimum material
parameter values of y and G} obtained by linear regres-
sion. These values are (1 N/m = 0.005710 Ib/in.):

Three-point bend, dry: Gf =34.48 N/m, y= 581 K
Eccentric compression,

dry: G2 =38.39 N/m, y= 623K
Average of dry tests: G =36.38 N/m, y= 602 K
Three-point bend, wet: G =33.03 N/m, y=1875 K

Note that the differences between the two specimen
shapes (dry tests) are statistically insignificant, in view
of the usual scatter for concrete. They are = 5.5 per-
cent for Gjand + 3.5 percent for v, relative to the
means. Since there is no significant difference between
the eccentric compression and three-point bend dry
tests, a combined line for both is plotted in Fig. 9(b),
according to Eq. (5). The fracture energy G.,,. at ref-
erence temperature 7, = 20 C (68 F) is obtained by lin-
ear regression using the combined data of both tests.

The portion of the wet specimen curve that lies above
the temperature of 100 C (212 F) in Fig. 9(a) is strictly
hypothetical because concrete cannot hold evaporable
waier above 100 C (unless the test was made in a pres-
surized chamber, but that would change G, as well).
Therefore, wet fracture energy for static loading above
100 C is physically meaningiess.

For wet concrete at temperatures below about 20 C,
Eq. (5) is probably inapplicable since the wet specimen
curve in Fig. 9(a) would pass above the dry specimen
curve. This would contradict the fact that the presence
of moisture is known to weaken the bonds in hydro-
phylic porous solids.

Based on the previous results, the effect of the eva.-
porable water content of concrete w per unit volume of
concrete may be estimated. ".et 4, and v, bc the values
of vy at w = 0 (dry state) and at w = w, = saturation
water content (wet state). As a crude estimate, we may
assume a linear variation of v as function of w. This
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yields for any water content the approximation

Y= %+ G- ™

According to the results shown v, = 602 K and v, =
1875 K for the concrete tested.

The dependence of ¥ on w may be physically ex-
plained by a dependence of the activation energy U on
w. Such a dependence is reasonable to expect since it is
known that the activation energy of concrete creep de-
pends on w. According to Eq. (7), we have

U= U+ (U= Up)- @)
1

with
Us= Y2 (nRy,), U, = Y2(nRy,) %

The linearity of Eq. (7) and (8) with respect to w is
of course a hypothesis. To determine vy at intermediate
water contents would be more difficult than the present
tests. Providing control of the environmental relative
humidity at arbitrary temperature would not be diffi-
cult; however, creating and maintaining a uniform
valve of some intermediate water content in the speci-
men would. It takes a very long time to dry a specimen
to a uniform moisture content, and due to the coupling
of temperature and humidity changes, it appears rather
difficuit to maintain a constant and uniform moisture
content during the test. It would probably be necessary
to make inferences from tests on specimens that are in
a transient hygrothermal state. The advantage of the
tests at either perfect saturation or perfect dryness is

Fig. 8—Loaded specimens in the water tank
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that a uniform moisture state is easily obtained and
easily maintained at temperature changes.

That the activation energy should depend on the
moisture content is not surprising. [t is well established

Fig. 7—Loaded specimens in an oven, installed in the
testing machine
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that ihe activation energy of concrete creep strongly
varies with the moisture content, and the same is true
of other porous hydrophylic materials such as wood.
Also, the creep activation energy is known to depend
on w nearly linearly.

The physical explanation of the dependence of U on
w lies probably in the very high disjoining pressures
caused by layers of hindered adsorbed water or inter-
layer water within the finest pores of the cement gel.
These pressures are superimposed on the stresses due to
load, thus lowering the energy barrier for bond rup-
tures. A mathematical model based on this mechanism
would no doubt be of help for determining the depen-
dence of U on w more accurately and for interpreting
test results at intermediate values of w.

CONCLUSIONS
1. The size effect law is applicable not only at room
temperature but also at elevated temperatures up to 200
C (392 F). Its parameters depend on temperature as
well as specific water content of concrete.
2. The Mode I fracture energy of concrete signifi-
cantly depends on temperature 7. It decreases mono-
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Table 3 — Fracture energy values obtained from
tests, N/im*

0C | 65C | 9C |120C [ 200C

Test Age | (68 F) [(139F) | (194 F)| (248 FY | (392 F)

3-point bend, dry 28 | 35.24 | 25.58 - 20.87 | 16.39

Eccentric compression, dry | 28 | 39.01 | 28.42 - 22.06 | 17.36
3-point bend, wet 28" 133307 13727 | 9.79" - —
3-point bend, wet 41 — 14.57 | 10.40 —_ —

* 1 N/m = 0.005710 {b./in.

! Corrected from age 41 days.

! From Bazant and Pfeiffer, not in water bath but in air immediately after
removal from moist room.

tonically and smoothly as T increases. For concrete
near saturation water content, this dependence is more
pronounced than for predried concrete.

3. The effect of specific water content on the frac-
ture energy is small at room temperature but grows as
temperature increases and is very large at temperatures
close to 100 C (212 F).

4. The measured dependence of Mode | fracture en-
ergy on temperature agrees with BaZant’s® formula {Eq.
(5)] based on the activatior energy theory (rate-process
theory).

5. Very different types of specimens such as the
three-point bend and eccentric compression specimens
yield approximately the same fracture energy values at
various temperatures. This indicates that the present
results for the fracture energy should represent true
material properties.
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SIZE EFFECT IN FATIGUE FRACTURE

By Zdenék P. BaZant and Kangming Xu
Center for Advanced Cement-Based Materials

McCormick School of Engineering and Applied Science
Northwestern University, Evanston, Illinois 60208

ABSTRACT: Crack growth in geometrically similar notched concrete
specimens of various sizes due to load repetitions is measured by means of
the compliance method. It is found that Paris law, which states that the
crack length increment per cycle Is a power function of the stress
intensity factor amplitude, is valid only (1) for one specimen size or (2)
asymptotically for very large specimens. To obtain a general law, Paris
law is combined with the size effect law for monotonic fracture proposed
previously by Bazant. This leads to a size-adjusted Paris law which gives
the crack length increment per cycle as a power function of the amplitude
of a size-adjusted stress intensity factor. The size adjustment is based
on the brittleness number of the structure, representing the ratio of the
structure size to the transitional size. The latter size is indicated by
the experiments to be much larger than that for monotonic loading, which
means that the brittleness number for cyclic loading is much less than the
brittleness number for monotonic loading. The crack growth is
alternatively also characterized in terms of the nominal stress amplitude.
In the latter form the size effect vanishes for small structures, while in
terms of the stress intensity (factor amplitude it vanishes for large
structures. The curves of crack length vs. the number of cycles are also
calculated and are found to agree with data.
INTRODUCTION
Repeated loading causes cracks to grow. This phenomenon, called fatigue

fracture, has been studied extensively for metals and is now understood




relatively well (e.g. Kanninen and Popelar, 1985; Broek, 1986: and Rolfe
and Barsom, 1977). For concrete, however, the knowledge of fatigue
fracture is still rather limited. Aside from fatigue studies outside the
context of fracture mechanics (e.g. Norby, 1958; Murdock and Kesler, 1958;
Stelson and Cerrica, 1958; Hilsdorf and Kesler, 1966; Kaplan, 1959; and
Avram et al.), fracture under cyclic loading was experimentally
investigated by Buluch et al.(1987), Perdikaris and Calomino (1987),
Suresh, Tschegg and Brockenbrough (1989), Suresh(1989), and Zhang et al
(1987). These investigations indicated that Paris law for crack growth
under repeated loading (Paris, 1962; Paris, Gomez and Anderson, 1961; and
Paris and Erdogan, 1963) can be at least to some extent transplanted from
metals to concrete. However, one important aspect - the size effect - has
apparently escaped attention so far, as far as fatigue is concerned. The
objective of the present study is to investigate the size effect, both

experimentally and theoretically.




FATIGUE TESTS OF SIMILAR NOTCHED BEAMS OF DIFFERENT SIZES

Two series of three concrete three~point-bend beam specimens of different
sizes were tested in a closed-loop servo-controlled (MTS) testing machine;
see Figs. 1 and 2. The ratio of cement : sand : aggregate : water in the
concrete mix was 1 : 2 : 2 : 0.6. The aggregate was crushed limestone of
maximum size 0.5 in. (12.7 mm). The sand was siliceous river sand passing
through sieve No. 1 (size 5 mm). Type 1 portland cement, with no
admixtures, was used. The specimens were cast in plywood molds with the
beam side face in a horizontal position. From each batch of concrete,
three beam specimens of different sizes (one of each size) were cast,
along with conpaﬁion cylinders of diameter 3 in. (76.2 mm) and length 6
in. (152 mm) for strength measurement. After the standard 28-day curing of
the companion cylinders, their mean compression strength was fL = 4763 psi
(32.8 MPa), with standard deviation 216 psi (1.49 MPa). The average direct
tensile strength was estimated as f; =6 /?z = 414 psi (2.86 MPa), average
Young’s modulus as E = 57,000 /?Z = 3.93XIOpgi (27,120 MPa) (all in psi).
An additional series of nine notched beam specimens of three different
sizes, three of each size, were cast from a different batch of concrete in
order to determine fracture properties under monotonic loading by the size
effect method.

The specimens of different sizes, both for cyclic tests and companion
monotonic tests, were geometrically similar in two dimensions, including
the lengths of their notches. The thickness of all the specimens was the
game (b = 1.5 in. = 38.1 mm). The beam depths were d = 1.5, 3 and 6 in.
(38.1, 76.2 and 127 am), the span was L = 2.5 d, and the notch depth was
a, = d/6 (Fig. 2).

The specimens were cast vertically (i.e.with the loaded side on top)

and demolded after 24 hours. Subsequently the specimens were cured in a




moist room of 95% relative humidity and 79 F (26.1 C) temperature until
the time of the test. Just before the test, the notches were cut by a band
saw. When tested, the specimens were days old. During the test, the
specimens were positioned upside down, with the notch on top. The effect
of specimen weight was negligible. During the cyclic tests (as well as the
monotonic control tests), the laboratory environment had a relative
humidity of about 65% and temperature about 78 F (25.6 C). The crack-mouth
opening displacement (CMOD) was measured by an LVDT gage supported on
metallic platelets glued to concrete.

In view of the difficulty of optical and other direct measurements, the
crack length was measured indirectly, by the CMOD-compliance method.
Although some doubts existed, the validity of this method for concrete has
recently been confirmed by Swartz and Go (1984) and Perdikaris, Calomino
and Chudnovsky (1986). The procedure was as follows: (1) Mark the notch
lengths on the beam flank surface according to a logarithmic scale. (2)
Cut the notch at midspan by a band saw. (3) Mount the LVDT gage and set up
the specimen in the testing machine. (4) Apply the load (at the rate
0.0004 in./min.) and, after several load cycles between zero and maximum,
record (with an X-Y recorder) the plot of load vs. CMOD, from which the
specimen compliance is later calculated (the load is small enough so no
crack would start). (5) Remove the specimen from the machine, extend the
notch by sawing a cut up to the next mark, and repeat the procedure. An
example of the relevant portion of the calibration curve of specimen
compliance vs. the ratio of notch length to beam depth is seen in Fig. 3,
which shows the measured data points as well as the curve of finite
element results. Their deviation is within the range of normal
experimental scatter in concrete testing.

In the cyclic tests, linear ramp load and frequency 0.033 to 0.04C Hz




was used. In all the tests, the load minima were zero and the load maxima
were constant and equal to 80 X of the monotonic peak load for a specimen
of the same size.
TEST RESULTS

A grapher was used to continuously plot the load history (Fig. 5a) and the
CMOD history (Fig. 5b) in each cycle (only the terminal part of these
histories near failure is shown in Fig. 5). The effective crack length,
representing the coordinate of the tip of an equivalent elastic crack, has
been determined from the compliance given by the slope of the unloading
segment of the measured load-CMOD curve,according to the compliance

calibration curve shown in Fig. 3. Based on the effective crack length,

eq
KI .

maximum loads measured in the companion monotonic tests are given in Table

one can determine the equivalent stress intensity factor, The
1. The table also gives the values obtained previously (Bazant and
Pfeiffer, 1987) on the same type of concrete and the same specimens. The
fact the these previous values were nearly identical confirss
reproducibility. The measured curves of load P vs. CMOD are shown in
Fig.5.

According to the fatigue fracture theory (e.g. Broek, 1986; Kanninen
and Popelar, 1985), crack growth depends on the aaplitude AKI of the

gstress intensity factor KI for the current effective (elastically

equivalent) crack length, a. As is well known,

bvYd n

in which o = relative crack length, d = characteristic dimension of the
specimen or structure, b = specimen thickness, P = load, f(a) = function
depending on specimen geometry, which can be obtained by elastic finite
element analysis and for typical specimen geometries 1is given in

handbooks; for the present three-point bend specimens, f(«) = (1 - a)-3/2




(1 -2.5a+4.49 a® - 3.98 o° + 1.33 o), as determined by curve-fitting

of finite element results (Gettu, BaZant and Karr, 1989); and
oN= cnP/ bd (2)

where oy = nominal stress; and cp = coefficient chosen for
convenience, for exaample so that On would represent the maximum stress
according to the bending theory formula for the ligament cross section; in
that case ¢, = 3L/2(d—a0) = constant for geometrically similar specimens
of different sizes. If the crack length is very small (microscopic), i.e.

I

calculated as if there were no crack; but in our case, due to the notch,

a « d, then K = ay /‘K—a s Where OY is the local macroscopic stress

the crack is not microscopic.

The fatigue test results are presented in Fig. 6, which shows the
relative effective crack length, & = a/d (calculated from the compliance
data), as a function of the number, N, of cycles, for each of the six
specimens tested (two of each size). From this figure, the measured points
in the plot of log(Aa/AN) vs. log(AKI) have been constructed, as shown in
Fig. 7a for a series of three specimens, one of each size, and in Fig. 7b
for both series, two specimens of each size. Here AKI is the amplitude
of the equivalent stress intensity factor calculated on the basis of the
current effective crack length a (of course AKX Iz KI because the lower
load limit is 0 in the present tests); AN represents the increments
between the consecutive cycles number ¥ = 10, 110, 210,...710, 760, 810,
820, 830,...900, 905, 910,...965, 966, 967,....974, and Aa are the
corresponding increments of a. The small, medium and large specimens
failed at N = 974, 850 and 882, respectively, for the first group, and at
N = 939, 1286 and 1083 for the second group. The units in Fig. 6 and 7 are
in.(25.4 mm) for a and 1b./in.>’% (1.009 N ca™/?) for &,

I
SIZE EFFECT IN PARIS LAW




As demonstrated extensively for metals, fatigue fracture follows
approximately the empirical Paris law (Paris, Gomez and Anderson, 1961;
Paris and Erdogan, 1963):

AK n
A‘“:c[ I] (3)

in which C and n are empirical material constants; n is nondimensional
and, for reasons of physical dimensions, C has the dimension of length,
and Kff = constant = fracture toughness. A in Eq.3 are the differences
taken over one cycle or a sufficiently small number AN of cycles. When the
range of Aﬂi is very broad, the test results for metals deviate below the
plot of Eq. 3 for very low AK. and above it for very high AK} {Kanninen

I

and Popelar, 1985), but for a broad enough range Eq.3 is good for metals.

According to Paris law, the plot in Fig. 7 would have to be a single
inclined straight line of slope n. This is seen to be indeed true for each
specimen of each size - see Fig. 7a; from the slope and intercept of the
regression line of the data points for each specimen one gets; n = 11.78,
log € = -40.2 (units in in. and 1b.) for the smallest size, m = 9.97, log
C = - 36.0 for the medium size, and n = 9.27, log C = -34.8 for the
largest size, with the overall average n = 10.57. The optimum fits by the
straight lines of slope equal to this average slope are shown in Fig. 8.
Fig. 8b shows the data for all the six specimens (two of each size)
compared to the same straight lines as in Fig. 8a. The fit is not exactly
optimum, but is still satisfactory. As we see, however, there are gross
discrepancies among various specimen sizes — not among the slopes n but
among the C-values (Fig. 8a,b). Thus, the Paris law is invalid for
concrete in general.

This is not really a surprising result, in view of the well-known
deviations of concrete behavior from linear elastic fracture mechanics

(LEFM). For monotonic loading, these deviations are quite well described




in terms of the size effect law proposed by Ba2ant (1984, 1986):

- -1/2 -
aN-Bt‘u(1+B) , B-d/do (4)

(Fig. 8a) in which B and da are empirical constants characterizing both

the material properties and specimen geometry; t‘u is a measure of the

tensile strength, e.g. fu = t”t = direct tensile strength; and GN =

nominal strength = nominal stress at maximum (ultimate) load Pu’ o,
cnPL/bd (Eq. 2). The meaning of da is the transitional size (dimension) of
the structure; for d » do(i.e. B » 1) failure is governed by LEFM while
for d « da (B » 1) failure is governed by strength theory (or plasticity).
For this reasom, B is called the brittleness number (Balant, 1987; BaZant
and Pfeiffer, 1987; BaZant and Kazemi, 1989a,b). Eq. 4, describing a
transition from the size effect of plasticity (i.e. no size effect in
strength) to the size effect of LEFM (i.e. the maximum possible size
effect in strength), is only approximate; but the accuracy appears to be
sufficient for the size range up to 1:20.

Due to deviations from LEFM, the critical value KIc of stress
intensity factor, KI’ at which the crack can propagate at monotonic
loading, is ﬂot constant but depends on specimen size and geometry. An
unambiguous definition of KIc (as well as of the corresponding fracture
energy Gt‘ = KIcz/ E) can be given only in terms of extrapolation to a
specimen of infinite size (Ba%ant, 1987; BaZant and Pfeiffer, 1987). At
infinite size, the specimen geometry cannot matter because (1) the
fracture process zone occupies an infinitely small fraction of the
specimen volume so that the whole specimen is in an elastic state, and (2)
the near-tip asymptotic elastic field to which the fracture process zone
is exposed at its boundary is the same for any specimen geometry. Thus,

= lim XK, for d -+ ® (more generally, K“. could be defined as the limit

KIf Ic
of Rice's J-integral).




To determine the size dependence of K[c’ we first express KIc by
substituting P = Pu with Pu = ON bd/cn into Eq. 1. Then, substituting Eq.

4 for 0‘ , we obtain (Fig.8b):

N
Bf Bd, f(x,) 1/2
1+8 ,
in which K . is a constant expressed as
If f‘“a’
Kp= Bf /d)— (6)

where we recognized that K., is the fracture toughness as defined above

If
because it represents the limit of Eq. 4 for d = ® or B - », Eq. 6,
derived in BaZant (1987) (see also BaZant and Pfeiffer, 1987), means that
the fracture toughness can be obtained from the size effect law parameters
B and da. These parameters, in turn, can be obtained if the values of
(t'u/O’N)z, calculated from the measured peak values Pu of the curves in
Fig. 5, are plotted versus d. In this plot, the slope of the regression
line is l/Bda and the vertical axis intercept is 1/B. Linear regression of
the peak load values from the present monotonic fracture tests provided B8

3/

= 0.520, d = 73.5 lb./in. 2 (1.099 N

0= 2.86 in.(72.6 mm), from which X
cn-s/z).

If

Now, how should the size effect be manifested in fatigue fracture? The
monotonic fracture represents the limiting case of fatigue fracture as AX I
- KIc at N+ 1. If the value of AKI is close to K o Aa/An must become
very large while KIc must at the same time follow the size effect law.

This can be modeled by replacing in Paris law (Eq. 3) the constant

fracture toughness X Ir by the size-dependent equivalent fracture toughness

KIc given by Eq. 5. So a generalized, size-adjusted Paris law may be
written as AK. <n
La _ ¢ —I] (7)
AN T KI
c

The transition size do in the size effect law (Eq. 3) applies only to




peak-load states at monotonic loading. For fatigue fracture, however, it
is unclear whether the value of the transitional size d0’ needed to
calculate ch (Eq. 5), should be constant and the same as for monotonic
fracture, or whether it should vary as a function of the ratio

Py = 8K /K . (8)

Assuming db = 2.86 in., same as for monotonic fracture, the optimum fit
of the present test data by the size-adjusted Paris law, Eq. 7, is shown
in Fig. 7c,d for the small, medium and large specimens by the dashed
straight lines. As one can see, the fit has improved substantially
compared to Fig. 7a,b, but not enough. This finding means that the
transitional size da cannot be constant but must depend on Py

Let us now assume that, for the present tests in which DE = 0.8, the
value of do is 28.6 in., i.e. 10-times larger. Then the optimum fit of the
present test data becomes as shown by the three straight lines in Fig.
7e,f. The closeness of fit is now satisfactory.

According to Eq. 7, if log(Aa/AN) is plotted against log(AK}s). the
data points for the specimens of ali sizes should have a common regression
line. Fig. 9 confirms that for do = 28.6 in. this is approximately indeed
so.

As shown in BaZant and Kazemi (1989a,b), do is proportional to the
effective length of the fracture process zone. 8o the value of dO deduced
from the present tests implies that the fracture process zone at load
cycling with amplitude 80 X of the maximum monotonic load should be about
10-times larger than it is for monotonic loading. Although the factor 10
might be too large to still accept equivalent LEFM calculations for the
present-size specimens, it nevertheless appears that the fracture process
zone is greatly enlarged by load cycling. Intuitively, this is not an

unexpected conclusion.
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CRACK GROWTH DEPENDENCE ON NOMINAL STRESS

Expressing AK} according to Eq. 1, Paris law may be written in terms of

the amplitude QGN of the nominal stress:

da _ = n - _ fle) "
iy - C(/ﬁ_AaN), c-c[/E;cnKIfJ (9)

where C is a constant if the specimens are geometrically similar, and B =

d/do. Likewise, after expressing AK} in Eq. 7 from Eq. 1, the

size-adjusted Paris law may also be written in terms of the nominal stress

amplitude:
Az _ - n
ay = C (/T4 o) (10)
For very small specimen sizes, d « do, this law simplifies as
b2 _ - n (11)
Ay C (80

i.e., the sige effect in fatigue fracture disappears. On the other hand,
for very large sizes, d « db, Eq. 10 asymptotically approaches Eq. 9 and
the size effect becomes the strongest possible.

The present data for the first series of fatigue specimens of
three sizes (one specimen per size), shown already in Fig. 7a,c,d, are now
plotted in Fig. 10a with log AUN as the abscissa, and in Fig. 10b with
the logarithm of the size-adjusted nominal stress amplitude as the
abscissa. The three straight regression lines predicted by Eq. 11 are also
drawn.

Comparison of Fig. 10a with Fig. 7 reveals that, in terms of the
nominal stress amplitude, the effect of size is much weaker than in terms
of the stress intensity factor amplitude. This agrees with the
conventional wisdom that concrete structures are relatively insensitive to
fatigue. But for a sufficiently large size this ceases to be true.

The foregoing observation is of course incidental. It is due to the
fact that all the specimens tested were relatively small. According to the

gize effect law, the effect of size on the nominal strength vanishes when

11




the size is very small, and is maximum when the size is very large. The
opposite is true for the size dependence of the stress intensity factor
required for fracture growth (Eqs. 4 and 7, Fig. 4). Thus, according to
the present theory, the size effect in Fig. 10 should become very large,
and in Fig. 7 very small, when the specimen or structure is very large.
For large structures, fatigue is better characterized in terms of the
stress intensity factor amplitude, while for small structures, fatigue is
better characterized in terms of the nominal stress amplitude. (Note that
a good absolute measure of structure size is its brittleness number — the
structure is very large if B » 1 and very small if f « 1; see BaZant and
Pfeiffer, 1987).

As we recall from Fig. 7, the larger the size, the smaller is the crack
length increment per cycle for the same stress intensity factor amplitude.
For the same nominal stress amplitude, though, the larger the size, the
larger is the crack length increment per cycle; see Fig. 10. The last
property is the same as in monotonic fracture — a size effect in the
usual sense of a weakening of the structure with an increase of its size.

CRACK LENGTH VS. NUMBER OF CYCLES

It is also interesting to integrate Eq. 3. Replacing A with d,
substituting da = ddda and separating the variables, one has ¥ =
f(AKI)-ndd dOIC. Then, substituting Eq. 1 one gets

N = (d/oNby/d /P § (£#())7" da (12)
Numerical integration yields the three curves of the relative crack
length, «, versus the number of cycles plotted in Fig. 6 for the three
specimen sizes. As we see, these curves agree with the measurements
relatively well. This again confirms that fracture mechanics is applicable
despite the fact that the size effect in terms of the nominal stress is in

the present tests quite mild.
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CONCLUSIONS

1. Paris law for fatigue fracture is applicable to concrete; but for
structures with macroscopic (large) cracks this is so only (l) for one
size of the specimen or structure or (2) asymptotically for very large
sizes. Otherwise a modification of this law is required.

2. Paris law may be adjusted for the size effect by combining it with
the size effect law proposed in BaZant (1984) for nominal strength in
monotonic loading. This leads to a law in which the crack length increment
per cycle is a power function of the amplitude of a size-adjusted stress
intensity factor.

3. The size-adjusted Paris law is corroborated by the measurements of
crack length growth due to fatigue loading of repeatedly loaded notched
specimens of size range 1 : 4. The calculated growth of the crack length
with the number of cycles also agrees with tests.

4. The fatigue crack growth can also be represented as a function of
the nominal stress amplitude and the brittleness number. In the latter
form, the size effect vanishes for very small structures, while in terms
of the stress intensity factor amplitude it vanishes for very large
structures. For sufficiently large structures, fatigue 1is Dbetter
characterized in terms of the stress intensity factor amplitude, whereas
for small structures fatigue is better characterized in terms of the
nominal stress amplitude.

5. The transitional size, separating predominantly brittle failures
from predominantly ductile (plastic or strength-governed) failures,
appears to be much larger (about 10-times larger) for cyclic loading than
it is for monotonic loading. Consequently, the brittleness number for a
structure under cyclic loading is much smaller than it is for monotonic

loading.
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6. It must be emphasized that the scope of the present tests has been
insufficient to check whether the foregoing conclusions are also wvalid
when: (1) the stress intensity factor amplitude is varied; (2) the iower
limit of the cyclic load is not zero; (3) the number of cycles per u;inute
is varied; and (4) different specimen geometries and notch lengths are
considered.
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Table1 Measured Maximum Loads for Monotonic Loading

Depth Maximum Load P Mean P

(in.) (Ib.) (Ib.)
1 2 3

Present Tests. 1.5 386 413 428 408
3.0 669 649 694 671
6.0 1190 1152 1154 1165
Tests of Bazant| 1.5 405 408 410 408
and Pfeiffer, 3.0 677 706 698 698
1987. 6.0 990 1040 1042 1024
12.0 1738 1739 1750 1742




Captions

Fig. 1 (a) Fatigue fractu;-e specimens of different sizes, and (b)

fracture specimens use in calibrating compliance.

Fig.2 Small (a) and medium (b) size fatigue fracture specimens, loading

set-up, and LVDT gages for crack mouth opening and for deflection.

Fig. 3 Test specimen geometry.
Fig. 4 Example of calculated and measured compliance calibration curve.

Fig. 5§ {a) Load-CMOD record for one specimen of medium size;
(b) measured load history for the same specimen (CMOD = crack

mouth opening displacement, in inches).

Fig. 6 Load-CMOD curves measured in monotonic loading of notched beam
specimens of three sizes (1 in. = 25.4 mm, 1 lb. = 4.45 N).

Fig. 7 Measured and calculated growth of the relative crack length with
the number of cycles, for all six specimens (two for each size).

Fig. 8 Logarithmic plots of crack length increment per cycle versus the
stress intensity factor amplitude, with independent regression
lines for specimens of three sizes (a in inches).

Fig. 9 Size effect law for (a) nominal strength and (b) critical stress
intensity factor.

Fig. 10 Logarithmic plot of crack length increment per cycle
versus the size-adjusted crack length amplitude, keeping the same
dO as in monotonic tests (left - one, and right - two specimens of
each size).

Fig. 11 Same as Fig. 10, but the transition size do is ten-times larger.
Fig. 12 Logarithmic plots of crack length increment per cycle versus

the amplitude of size-adjusted stress intensity factor, two
specimens of each of three sizes, and optimum fit by size-adjusted
Paris law (Eq. 7).

Fig. 13 Logarithmic plots of crack length increment per cycle versus
nominal stress amplitude; left -~ without, and right -

with size adjustment.
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ABSTRACT

The size effect method for determining material fracture characteristics,
which was previously proposed by BaZant and extensively verified for
normal strength concrete, is applied to typical high strength concrete.
Geometrically similar three-point bending specimens are tested and the
measured peak load values are used to obtain the fracture energy, the
fracture toughness, the effective length of the fracture process zone, and
the effective critical crack-tip opening displacement. It is shown that
the brittleness of the material can be objectively quantified through the
size effect method. Comparison of the material fracture properties
obtained with those of normal strength concrete shows that an increase of
1607 in compressive strength causes: (1) an increase of fracture toughness
by only about 25%, (2) a decrease of effective fracture process zone
length by about 607%, and (3) more than doubling of the brittleness number,
which may be an adverse feature that will need to be deait with in design.
The brittleness number, however, is still not high enough to permit the
use of linear elastic fracture mechanics. It is also demonstrated that the
R-curves derived according to the size effect law exclusively from the
maximum loads of specimens of various sizes yield remarkably good
predictions of the load-deflection curves.

keywords: high strength concrete, fracture, size effect, R-curve, fracture
energy, fracture toughness, fracture process zone, nonlinear fracture
model, brittleness
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INTRODUCTION
Concretes of strengths exceeding 80 MPa (12000 psi) are now commonly being
used in the construction of  high-rise ©buildings and offshore
structures 1-5. The utilization of concrete of such high strength has been
spurred on by the superior mechanical properties of the material and the

cost-effectiveness it provides 2,6

The high strength concrete of today is
a highly engineered material with several chemical and mineral admixtures.
It is possible to obtain workable mixes with very low water contents by
using super-plasticizers and retarders. Pozzolanic additives such as fly
ash and silica fume are employed to alter the hydration reactions
beneficially and also to fill the microscopic voids between cement
particles. Small, round aggregates are used to achieve'better mixing and
attain higher surface areas for bonding. Typical high strength concrete
has a very high strength matrix, is more compact and possesses well-bonded
aggregate—-mortar interfaces 7

In the past, research on high strength concrete has primarily
concentrated on increasing the "strength" of the material 8. In the last
decade, however, considerable effort has been spent in studying 1its

1-4,6,7,10-13  yevertheless,

mechanical properties and structural behavior
many aspects such as the fracture behavior need much more detailed
investigation.

A complicating feature in the fracture analysis of Dbrittle
heterogeneous materials such as concrete is the nonlinear behavior. This
is due to the fact that the fracture process is not concentrated at a

point, the crack-tip, but is distributed over a zone whose size is not

negligible when compared to the dimensions of the body. The existence of




the large fracture process zone is manifested in the size effect exhibited
by concrete specimens and structures, which is considerable but not as
strong as in linear elastic fracture mechanics (LEFM). The conditions for
which LEFM is applicable to concrete are attained only for extremely large
test specimens, whose testing would be very costly. However, material
fracture properties which are unambiguous and, especially, size- and
shape-independent can be defined only on the basis of a very large
specimen or, more precisely, by means of extrapolation to a specimen of
infinite size.

The simplest method to obtain size-independent material fracture
properties 1is perhaps provided by extrapolation to infinite size on the
basis of the size effect law proposed in Ref. 14 and 15 (see also Ref.
16). This law approximately describes the transition from the strength
criterion, for which there is no size effect, to LEFM criterion, for which

the size effect is the strongest possible. This law has been shown to

agree well with concrete fracture tests in Mode 1 17. as well as Mode
18 19,20

II and Mode III . A good agreement was also demonstrated for

certain ceramics 21. rocks 22'23, and aluminum alloys 24.

An important advantage of the size effect method is its simplicity.
The method requires only the maximum load values of geometrically similar
specimens which are sufficiently different in size. Such measurements can
be carried out even with the most rudimentary equipment. Neither the
post-peak softening response nor the true crack length need to be
determined. Another advantage of the size effect method is that it yields

not only the fracture energy (or fracture toughness) of the material but

also the effective length of the fracture process zone, from which one can




further obtain the R-curve and the critical effective crack-tip opening
displacement. Determination of the fracture process zone size is of
particular interest for high strength concrete because, for various
reasons, such concrete is suspected to be more brittle, and, therefore, to
have a smaller fracture process zone than normal strength concrete.

In view of the aforementioned reasons, the size effect method has
been adopted for the present experimental investigation of high strength
concrete. The objectives will be to obtain the fracture energy and the
process zone size. The third objective will be to investigate whether the
R-curves derived solely from maximum load data yield load-displacement

curves that agree sufficiently well with measurements.

REVIEW OF THE SIZE EFFECT LAW AND ITS IMPLICATIONS

Size Effect
Structures and test specimens of brittle heterogeneous materials, such as
concrete, rock and ceramics, exhibit a pronounced size effect on their
failure loads. This phenomenon, which is an important consequence of
fracture mechanics, has been described by the size effect law proposed

Ref. 14 and 15:

Bf
(1

9
[}
e
™
[]
Q.

1+ 0
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which applies to geometrically similar structures (or specimens) of
different sizes; N = ©, Pu/bd = nominal stress at maximum load Pu
(ultimate load), b = thickness of the structure or specimen, same for all

the sizes (two-dimensional similarity), d = size or characteristic

dimension of the structure (or specimen), ch = coefficient introduced for




convenience, B and do = parameters determined experimentally, fu is a
measure of material.strength, and B 1s called the brittleness number. Eq.
(1) also applies to structures that are similar in three-dimensions by
taking N = S Pu/dz. In this paper, only two-dimensional similarity 1is
considered.

Plastic limit analysis, as well as any analysis with failure criteria
in terms of stresses and strains exhibits no size effect, that is, Y is
independent of size if the structures are geometrically similar. According
to Eq. (1), this behavior is obtained for very small bodies of concrete,
B<<1l. The application of fracture mechanics theory, however, results in ¢N
being strongly size dependent. This 1is easily seenZs from the LEFM

relations for energy release rate G, and stress intensity factor KI :

2
g=F gla) ., K = CE™ = P fla) (2)
E'b2d bvd

where P = applied load, f(a) is a geometry-dependent function of relative
crack length « = a/d (a = crack length), g(a) = [f(a)]z. E’ = E for plane
stress, E' = E/(I—vz) for plane strain, E = Young’s modulus of elasticity,
and v = Poisson’s ratio. Values of f(a) can be obtained by elastic
analysis techniques, such as the finite element method, and for basic
specimen geometries, formulas for function f(«) can be found in fracture
mechanics handbooks (e.g., Tada et al. 26, Murakami 27).

When g’ («)>0, which applies to most situations, LEFM indicates that
the maximum load occurs at infinitesimal crack extensions. Therefore, a at
maximum load 1is practically the same for bodies of different sizes.

Setting G = G. (fracture energy) or K. = K (fracture toughness or

f I Ic
critical stress intensity factor) along with P = Pu , Eq. (2) according to




y °n size, which is oy = constant/vd. As is

well known, LEFM criteria govern orly the fracture behavior of very large

LEFM yields the dependence of ¢

concrete structures.

In usual-size concrete structures and specimens, the fracture process
zone which forms in front of a propagating crack affects the behavior
significantly. With increasing 1load this zone grows in size while
remaining attached to the notch tip (provided that the specimen geometry
is such that g’(«x)>0). The process zone shields the propagating crack tip
and, thereby, increases the fracture resistance. The nonlinear fracture
regime, where the influence of the process zone is dominant, lies between
behavior governed by 1limit analysis and LEFM. As a result, there is
considerable size effect on the failure of normal concrete structures and
specimens but it is not as strong as that of LEFM. This transitional size
effect is described by Eq. (1).

The size effect law (Eq. 1), giving the approximate relation of oy to

B (the brittleness number), is plotted in Fig. 1. For large B, such as

B>10, Eq. (1) gives (with an error under 5%) the approximation Ty d-tlz.

which is the size effect exhibited by LEFM. For small B, such as B<0.1,
Eq. (1) ylelds (again with an error under 5%) oy = Bfu = constant, that
is, fallure loads are proportional to the strength of the material and
there is no size effect. For 0.1<B<10, the size effect is transitional
between LEFM and plastic limit analysis. In this range, nonlinear fracture

mechanics must be employed17’25.

Fracture Parameters
Nonlinear fracture can be characterized by two material parameters,

the fracture energy, Gf , and the effective length of the fracture process




zone, cf . When determined from individual tests, however, these

guantities are strongly size-dependent. Unambiguous definitions of Gf and

g 38 fundamental material properties, independent of specimen size and
17,22,23,25

c

shape ,» can be given on the basis of size effect: G_. and c_. are

f f
the energy required for crack growth and the effective (elastically

equivalent) length of the fracture process zone, respectively, in an
infinitely large specimen.

Mathematically, the definition of fracture energy can be stated as Gf

= 1lim G = lim (KZ /E’), where Gm and K n 2re the apparent values of G

doo m doe Im I

and K respectively, calculated according to LEFM (Eq. 2) for the

measured peak load Pu and initial crack or notch length a, -
Eq. (1) can be used to determine Gf and Ce from experimental data

using thelr foregoing definitions. A simple formula for Gf has been

derived in Ref. 2S:
2.2

B fu
Gf = — 'dog(ao) (3)
cn E

For the effective length of the fracture process 2zone, the following
expression has been derived in Ref. 22.

dog(mo)
=

£ % @ Ta,) (4)

(o

The ratio of c_. to the true length of the process zone in concrete depends

f
on the shape of the softening stress-displacement or stress-strain
relations. For concrete, the ratloz1 seems to be about 2. However, the

actual length of the process zone need not be known for the calculations.

Also, for an infinitely large specimen, the fracture toughness, KIc .




can be obtained as:

Bf
’ = _._B.
KIc = VvE Gf chdogZaos (S)

The practical applicability of Eq. (3) (or Eq. S5) has been verified
in Ref. 18 through tests of normal concrete which showed that the
three-point bend specimens, the double-notched tension specimens and the
eccentric compression specimens yield about the same value of Gf. In this
study we assume the same to be true of high strength concrete.

Due to the approximate nature of Eq. (1), the infinite size used in

the definitions of Gf , ¢. and KIc must not be interpreted literally. In

f

practice, the infinite size should be assumed as a size just beyond the

upper bound of the range for which the size effect law has been calibrated

by tests or otherwise 25.

, , 172 _
Using the relations B = (E Gf/g (ao)cf) cn/fu and d0 =

cfg’(ao)/g(ao) in Eq. (1), the size effect law can be reformulated in
terms of the material fracture properties Gf and °f :

1

E'G Y2

o = en|gaTe g (6)
nig'lagice * gla,

Alternatively, Eq. (6) can be put in a form convenient for the analysis of
specimens which are not geometrically similar 22:

1
E‘G

L f (7)
cf+3
where Ty = Vg’iaoi Pu/bd. d = d g(ao)/g (ao); Ty = intrinsic

(shape-independent) nominal stress at failure, and d intrinsic

(shape-independent) size of the structure.




The brittleness number, B, (see Eq. 1) proposed by BaZant can also be

expressed as 22’25:

g(ao) d g3
B = 7 la e, o (8)

0o'"°f °f
This number is capable of characterizing the type of failure (brittle or
ductile) regardless of structure geometry17. It can quantify the proximity
of the behavior of a structure to LEFM and is, therefore, a convenient and
effective measure of the brittleness of a structure or specimen. It is
also useful for comparing the behavior of specimens of different materials
(with different compositions and strengths) such as high strength and
regular concretes. Other brittleness numbers defined for concrete by

Hillerborg 28 29,30

and Carpinteri can compare only structures of similar
geometry.

The size effect law in the form of Eq. (1), (6) or (7) has the
advantage that its parameters B and dO’ or Gf and Cey can be determined

1415 g (1),

from the measured peak loads Pu by linear regression
applicable to geometrically similar specimens of different sizes, can be
algebraically transformed to a linear plot:
Y=AX+C (9)
in which
X=d, ¥ = (/0% 8=1/C, and d = C/A (10)
The size range of the specimens used in the regression analysis must be
sufficliently large 1in relation to the random scatter of material
properties and test measurements. For the typical scatter of concrete, the

minimum size range recommended is 1:4.

The size effect method can also be used to determine fracture




properties other than those already defined. Considering the infinitely
large specimen again, material parameters such as the effective
(elastically equivalent) crack-tip opening displacement at the peak load,
23

aef , can be related to cf and KIc using LEFM relations

ef E' Vv 2=rn

The value of sef pertains to the effective opening when the stress at the
notch (or initial crack) tip is Just reduced to zero, and the fracture
process zone is about to detach and advance away from this tip.

The size of the fracture process zone can also be characterized by

KIc 2
to = | (12)

first used by Irwin 3 for the size of the yielding zone in ductile

the length parameter

fracture. For concrete, this length parameter was introduced by Hillerborg
et al. 32. The parameter 80 is a size-independent measure of the intensity
of the toughening or crack-tip shielding mechanisms. It can be used to
compare the brittleness of one material with another. A material with a

relatively low 80 would be more brittle than a material with a higher ZO .

R-Curves
Another important consequence of the fracture process 2zone is the
fracture resistance curve or R-curve. Since the fracture process =zone
evolves as it propagates, the resistance R(c) to fracture growth,
representing energy dissipated per unit length and width of fracture
extension, gradually increases. The function R(c), called the R-curve, was

initially proposed to be used as a material property 33'34, independent of

10




the shape of the specimen or structure. It was, however, shown3s’36

that
the R-curves for concrete strongly depend on the specimen geometry. A
general derivation of the R-curve equations from the size effect law as

presented in Ref. 22, yields the expression:

g’ (7) e
in which 7 is given by:
c g’ (ao) gly)

The foregoing relations (Eqs. 13 and 14) are valid as long as the fracture
process zone remains attached to the tip of the initial crack or notch.
This ceases to be true after the peak load23. Since the fracture process
zone in the post-peak regime is detached from the tip (separated from the
initial tip by a traction-free crack) and is advancing ahead with
approximately constant size, it dissipates roughly the same amount of
energy per unit crack extension. Consequently, the critical value of G
after the peak load must be kept constant and equal to the value of R
reached at the peak load. The effective R-curves given by Egs. (13) and
(14), are size-independent until the peak load but deviate afterwards into
size-dependent horizontal branches. The size-dependence of R-curves in the
post-peak regime has been previously observed {or concrete 37 and other

23,24,38

materials These effective R-curves tend to move toward complete

coincidence with the actual R-curve as the size increases

11




EXPERIMENTAL INVESTIGATION

Test Details

High strength concrete used in the construction industry varies widely in
composition and strength. Even the demarcation between high and normal
strength concretes is subjective and appears to be continually rising 2'8.
In order to study typical high strength concrete used in the industry,
this investigation was conducted on material obtained directly from a
batch mixed for the construction of a high-rise building in downtown
Chicago. The concrete was provided by Material Services Corporation of
Chicago, Illinois.

The concrete mix was designed to exceed a 28-day compressive strength
of 83 MPa (12000 psi). Cement of much higher quality than standard (ASTM C
150) Portland cement was selected. Silica fume (micro-silica) and fly ash
were used as mineral admixtures. The maximum aggregate size (da) in the
mix was 9.5 mm (3/8 in.). The details of the mix composition are given in
Table 1. The proportions of cement : sand : gravel : water : fly ash :
micro-silica, by weight, were 1 : 1.35 : 2.42 : 0.35 : 0.25 : 0.04. The
fresh concrete had a unit weight of 2410 kg/m3 (151 lb/fta) and a slump of
235 mm (9.3 in.) as measured with a standard 305 mm (12 in.) cone.

Along with the fracture specimens, three 152 mm x 304 mm
(6 in. x 12 in.) cylinders and three 102 mm x 204 mm (4 in. x 8 in.)
cylinders were cast. These cylinders were capped with a sulphur compound
and cured in a fog room. They were tested in compression after 14 days.
The larger cylinders failed at an average maximum compressive stress of
85.5 MPa (12400 psi), with a standard deviation of 1.4%. This value,

denoted as fé was taken to be the mean compressive strength of the

14 °

12




concrete. The smaller cylinders had an average compressive strength of 84
MPa (12200 psi), with a standard deviation of 0.4%. The 28-day compressive
strength of the concrete, fé , as measured by testing two 152 mm x 304 mm
(6 in. x 12 in.) cylinders, was 96 MPa (13950 psi).

Beam specimens of four different sizes, three in each size, were cast
from the same batch of concrete. All specimens were compacted by rodding
and stored in the molds for 24 hours. They were then demolded and cured
under water until the tests. The specimens (Figs. 2 and 3) were 38 mm
(1.5 'in.) thick and their depths were 30S, 152, 76, and 38 mm (12, 6, 3,
and 1.5 in.). Their lengths were 8/3 times their depths and their spans
2.5 times the depths. Before testing, a notch 2 mm (0.08 in.) wide was cut
at the midspan of each beam using a diamond band saw. The length of the
notch was one-third the depth of the beam.

The three-point bending test was used au: to the relatively simple
test setup and the impossibility of crack bifurcation 22. The peak loads
of the largest specimens were measured by loading them under stroke
control in a 534 kN (120 kip) load frame with an MTS control system. The
other specimens were tested in a smaller load frame of 89 kN (20 kip)
capacity, with a load cell operating in the 8.9 kN (2000 1lb) range, and
crack mouth opening displacement (CMOD) control with an MTS closed-loop
control system was wused. A Schaevitz 1linear variable differential
transformer (LVDT) with a range of 0.25 mm (0.01 in.) was mounted across
the notch of each beam to monitor the CMOD. The measured CMOD was used as
feedback to control the tests at a constant CMOD rate. This type of
loading stabilized crack propagation even after the peak load and thus

made it possible to obtaln complete load-deflection curves for the

13




specimens. The load-point displacements were measured between the tension
faces of the beams and the cross-head of the loading ram with a Schaevitz
LVDT of 1.27 mm (0.05 in.) range. The load-displacement and load-CMQOD
curves were continuously recorded for each beam. The test setup is shown
in Figs. 4 and 5. All the beams were tested 14 days after casting and with
CMOD rates such that they reached their peak loads in about 10 minutes.
Typical curves for different specimen sizes are shown in Figs. 6 and 7,
and the raw data are given in Table 2.

The test results from the largest beams were, however, excluded from
the analysis which follows because their load values were inconsistent
with the trend of the other tests. In retrospect, this inconsistency may
be due to the difference in control parameters used for testing and in
machine characteristics. Under stroke control, which was used only for the
largest beams, it was not possible to obtain a stable response at the peak
load. The instability of crack propagation may have caused a high crack
propagation rate near the peak load. This might explain why the peak loads
of these specimens were higher than expected.

The modulus of rupture of the material was used as the measure of its
strength. Four specimens, each with a depth of S1 mm (2 in.) and a span of
152 mm (6 in.), were cut from two of the 152 mm (6 in.) deep fracture
specimens which had already been tested. These unnotched beams were tested
to fallure in three~point bending under stroke control in the 89 kN
(20 kip) load frame. From the peak loads the modulus of rupture of each
specimen was calculated. The average value (fu) was found to be 11.0 MPa
(1600 psi), with a standard deviation of 5%. Carrasquillo, Nilson, and

Slate 7 proposed an empirical formula for the modulus of rupture of high

14




strength concrete: fr= 0.94 V—TZ“ (stresses in MPa). Using the value of
fé14 in their reiation, fr was obtained as 8.7 MPa (1260 psi). The
difference in the values of fu and fr may oartly be due to errors in the
predictions of the formula (known to be up to 15%) but it might also be
due to the significant size effect which is known to exist in flexural

tests on plain concrete beams 15'39.

As noted previously by several researchers7’9'10’12, cracks in high
strength concrete were seen to propagate through the coarse aggregates.
This 1s an important difference from normal strength concrete in which
cracks (in the vicinity of gravel particles) propagate mainly along the
aggregate-mortar Iinterfaces. The reduced crack deflection by the
aggregates is due to the strong aggregate-mortar bond and the fact that
the strength of the matrix approaches that of the aggregates. Obviously

this near-homogeneous behavior decreases the width of the process zone as

well as the shielding effect of the aggregates.

Analysis
Linear regression analysis (Fig. 8), using Egqs. (9) and (10), yields

1 (40.1 in.”1) and C = 51.7. The coefficient of

coefficlents A = 1.58 mm
variation of the deviations from the regression line is
s the standard error of the Y estimate and

w=gs / ? = 1S%, where s

Y|X v[x !
Y is the mean of the experimental Y-values. From Eq. (10), the parameters
of Eq. (1) are computed as B = 0.139 and do = 32.8 mm (1.29 in.).
Nonlinear regression analysis directly for B and do , using the
Marquardt-Levenberg algorithm, results in B = 0.198 and d0 = 13.3 mm

(0.52 in.) with w = 8.4%. Since the nonlinear regression provides a better

fit, the latter values for the size effect parameters are used henceforth.

15




Fig. 9 shows the size effect curve (Eq. 1) based on the calculated
parameters along with the experimental values of normalized nominal
stress. It is seen that the trend of the data is fitted very well by the
size effect law. For comparison, data from similar tests of normal
strength concrete (particulars given later) are also shown. It 1s now
important to observe that the data points of the high strength concrete
beams lie closer to the LEFM criterion than those of usual concrete. This
indicates that the same specimen made of high strength concrete behaves in
a more brittle manner than that made of regular concrete. Yet the behavior
of the present specimens cannot be described by LEFM. For LEFM relations
to be applicable with errors less than 2%, the brittleness number B8 would
have to be greater than 25, that is the beam depth would have to exceed
334 mm (13 in.).

For the specimen geometry used, the function f(a) = 6.647Vx(1-2.5a
+4.49a2-3.98a3+1.33a4)/(1-a)3/2 was obtained by fitting the results of
linear elastic finite element analysis. Using g(ao) = 14.20 and
g’ (ag) = 72.71 in Eq. (5), K,  is 30.0 MPavmm (864 psi vVin.), and the

Ic

from Eq. (4), is 2.6 mm (0.10 in.)}. This yields ¢

value of ¢ E O.3da .

£’ f
From Eq. (12), CO for the concrete tested is 7.4 mm (0.29 in.) which is

about 0.8da . Young’s modulus of elasticity (E) may be computed from the

formula of Carrasquillo et al. 7. E = 3320 V?: + 6900 (in MPa), which

yields E = 37.6 GPa (5.45x106 psi). The fracture energy Gf (= KIi/E] is
found to be 24.0 N/m (0.137 1lbs/in.). The critical effective crack-tip

opening can be computed by substituting the values of the basic fracture

3

properties in Eq. (11); & . = 4.11x10°° mm (1.60x10" % in.).

ef

For comparison, it is interesting to consider the results of similar
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tests on normal strength concrete with da = 13 mm (0.5 in.). The -elative
proportions of cement : sand : gravel : water, by weight, were
1:2:2: 0.6. The specimens and loading setup were identical to the
present ones except that the notch lengths were one-sixth of the beam
depth. The curing conditions were the same as those of the high strength
specimens. The tests were conducted 28 days after casting and, therefore,
the parameters corresponding to 14 days had to be estimated to this
effect, the following relations were used: fr = 0.62 V?: (ACI); fé =
0.50 V?Z (ACI); E = 4735 V?z (ACI); fé(t) = fé(ZS) t/(4+0.85t) (ACI); and

G, = (2.72+3.103f’)f’2d /E where f’ , f! , and E are in MPa, d_ is in mm,
f t’"t Ta c t a
Gf is in N/mm and t is the age in days40. The material properties

estimated for the age of 14 days are: f; = 32.5 MPa (4700 psi), E = 27.0

GPa (3.91x106 psi), f. = 3.5 MPa (510 psi), Kie = 24.0 MPavmm (690.1

psivin.), Ce = 6.6 mm (0.26 in.), Gf = 21.4 N/m (0.122 1lbs/in}, sef =
3

7.29%x10 2mm (2.87x10 Yin.), and t, = 46 mm (1.80 in.). The values of ¢

f
and to are about 0.5da and 3.6da , respectively. A graphical comparison of

the properties of the high strength concrete and the regular concrete is
presented in Fig. 10.

As concluded by recent Iinvestigators of high strength concrete

fracture 11'12’41, Gf and KIc increase with strength but much less than

the material strength 1itself. For an increase in strength (fé) of about
160%, Gf and KIc increase only by 124 and 25%, respectively. More

significantly, the values of Ce and to , especlially the latter, decrease
considerably with increase in strength. This implies that the size of the
process zcne must be smaller in high strength concrete than in regular

concrete, and the crack-tip shielding by the fracture process zcne must be

17




weaker. Consequently, the same structure made of high strength concrete is
more brittle than that made of reguiar concrete. The brittleness number of
any structure is more than doubled since it is inversely proportional to

the value of cf .

Conventional fracture analysis of the type applied to metals, based

only on KIc or Gf , would yield the misleading conclusion that the

ductility of concrete increases with strength; see e.g. de Larrard et

al. 41. This was also pointed out by John and Shah 11 on the basis of

tests on high strength mortar.

According to RILEM recommendation 42, the fracture energy, denoted as

GR is defined by the work-of-fracture method introduced for ceramics by

f »
43 44
Nakayama and Tattersall and Tappin ,» and proposed for concrete by

28'45. In this method, G? can be determined from the area, wo .

Hillerborg
under the load-deflection curve of a fracture specimen. The total energy
dissipated in the test is given by W = w0+ mg u. where mg = weight of the

specimen and u_. = deflection when the beam fractures completely. The RILEM

f
fracture energy is assumed to be the average dissipated energy per unit
cracked surface area; therefore, G? = W/(d-ao)b where d = depth of the
beam and ay = initial notch length. For practical reasons, U was taken to
be the deflection when load had dropped to 10% of the measured peak load.
The corresponding fracture toughness can be obtained as K?c = Vé§E;,
where Eo is the Young's modulus corresponding to the initial compliance.
The values of K?c/KIc for different sizes have been calculated from the
present results and plotted in Fig. 11. It is obvious that the fracture
toughness obtained by the RILEM method is strongly size-dependent and

prone to ccnsiderable scattering. It also appears that for very large

18




sizes the values of KR tend toward K

Ie Ie * i.e., the fracture toughness

from the size effect law. A similar result could be shown in terms of the

fracture energy.

PREDICTION OF STRUCTURAL RESPONSE FROM R-CURVES

An effective, simple and reasonably accurate method of predicting the
load-deflection curves is to identify the size effect law from the maximum
load data, determine from it the geometry-dependent R-curve, and then
utilize the R-curve along with LEFM relation523. This method is now used
to predict the load-deflection curves of the high strength concrete beams.
The predictions are then compared with the measured load-deflection
curves.

The derivation of the equations used in the method is briefly
outlined for convenience. Let uc = load~point displacement of a specimen
due to fracture, u, = displacement calculated as if there were no crack,

0]

and u = uc+ u, = the total displacement. WP denotes the total energy that
would be released if the fracture occurred at constant load P. Since

awp/aa = bG = Pzg(a)/E’bd, we have:

PZ
W, =Db I G(a) da = oy IZ gla’) da (15)

According to Castigliano’s second theorenm,

aw
P 2P ‘ p
U, =z FE . gla’) da (16)
At the same time, for G = R:
E'd bvd
19




(¢) = VE'R(c) =

where ¢ = (a-ao)d = effective crack extension, and KIR

effective fracture resistance. Thus, P and uc can be obtained from Egs.
(16) and (17), for different chosen values of « or ¢, ylelding the
load-deflection curve of the structure or specimen with a propagating
crack. Before the peak load, one uses the R-curve values derived from the
size effect law (Eqs. 14 and 15), but after the peak load, as mentioned
earlier, the R-curve, as well as KIR(c) is constant.

To obtain the total deflections, the elastic deflections uy and ug
due to bending and shear must also be calculated. Assuming plane stress
conditions and adopting the bending theory, the load-point displacement Uy
of the beam without crack is

PL3
4bd’E

- PL
N l.ls = 0.6(1+v) WE (18)

g T Uyt U U
where L is the span of the specimen, and Uy and u, are the contributions
of bending and shear, respectively. The weight of the beam |is
approximately taken into account in the calculations by replacing it with
a concentrated midspan load which produces an equivalent midspan moment.

Figures 12(a-c) compare the predictions of the foregoing method for

the present high strength concrete beams with the measured load-deflection

curves for specimens of three different sizes. The Young's modulus, in
each case, was taken as that corresponding to. the initial compliance of

the specimen, and the Poisson’s ratio was assumed to be 0.20. It can be

seen that the R-curve method predicts the specimen response quite well.
The R-curve derived from the size effect law is thus shown to be a useful

tool for modeling structural behavior with ease and simplicity.




CONCLUSIONS

1. The size effect method provides reliable fracture properties for high
strength concrete with a very simple experimental setup. These properties,
namely, the fracture energy (or fracture toughness) and the effective
length of the fracture process zone (as well as the effective critical
crack-tip opening displacement derived from them) are size-independent
and, therefore, true material properties.

2. As the strength increases, the fracture energy and the fracture
toughness of concrete also increase, although much less than the strength.
The effective size of the fracture process zone, however, diminishes. This
results in decreased crack-tip shielding and, consequently, increase in
the brittleness of specimen or structure. Increasing the compressive
strength by 160% causes the brittleness number to more than dcuble. This
property can be disadvantageous and needs to be addressed in design.

3. Despite the aforementioned increase in brittleness, the behavior of
contempeorary high strength concrete, in the normal size range, is still
governed by nonlinear fracture mechanics rather than linear elastic
fracture mechanics.

4, The R-curves derived according to the size effect law solely from
maximum loads can be utilized to provide reasonably accurate predictlions
of the load-deflection curves of concrete structures, even in the
post-peak regime. The procedure requires only: (1) knowledge of the linear
elastic fracture mechanics relations for the geometry of the structure and
(2) the values of two basic material fracture parameters obtained from

maximum loads through the size effect method.
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NOTATION
a effective crack length
b specimen thickness
c elastically equivalent crack growth
Ce effectlve length of fracture process zone
cn coefficient for convenience (here, equal to 1)
d characteristic specimen dimension (here, sﬁecimen depth)
da maximum aggregate size
do parameter determined experimentally
f; 28-day compressive strength
fé14 14-day compressive strength
fu some measure of material strength

gla) function dependent on specimen shape

g’ (@) derivative of g(a) with respect to «

Zo parameter related to the size of the process zone
A slope of linear regression plot
B parameter determined experimentally
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c intercept of linear regression plot
E Young's modulus
E’ E, for plane stress; E/(l-vz), for plane strain
G strain energy release rate
Gf fracture energy
KI stress intensity factor
KIc fracture toughness
Pu maximum or peak load
a relative crack length
%, initial relative crack or notch length
B brittleness number
of effective critical crack tip opening
v Poisson’s ratlo .
TN nominal stress gt maximum load
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TABLE 1

Concrete Composition for about 0.8 m3 (1 yd3)

Dundee Cement (ASTM Type I)

Sand (FA2)

Gravel (CA1S)
(Crushed Limestone)

Water
Fly Ash (Class C)
Micro-Silica

(W.R.Grace Force 10,000)
Retarder (naphthalene-based)

(W.R.Grace WRDA 19)

High-Range Water Reducer

(Pozzolith 100XR)

363 kg
490 kg
880 kg

127 kg
91 kg
16 kg

1¢

5.3¢

(80C 1b)
(1080 1b)
(1940 1b)

(280 1b)
(200 1b)
(35 1b)

(35 oz.)

(180 oz.)
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TABLE 2: Summary of Test Results

Specimen Peak | Deflection Final | Peak EO wo
Dimensions Load |at Peak Load|Deflection CMOD
(mm x mm) (N) (mm) (mm) (mm) (GPa) | (N-mm)
38.1 1668 n.r. n.r. 0.0127 6.0 n.r.
x 101.6 1490 0.0610 0.1092 0.0114 7.0 74
1735 0.0914 n.r. 0.0146 5.5 n.r
76.2 2357 0.0864 0.1727 0.0222 7.7 167
x 203.2 2091 0.0686 0.1626 0.0152 8.2 143
2535 0.0711 0. 1422 0.0292 9.0 142
152.4 3825 0.1143 0.2184 0.0381 9.2 362
x 406.4 3736 0.0940 0. 3200 0.0437 6.2 418
3825 0.1710 0.2388 0.0356 12.7 326
304.8 7072
X 812.8% 7442 n.m n.m n.m n.m. n.m
7695
+ All specimens 38.1 mm wide

1 Stroke-controlled tests, not used in analysis
* Deflection when the load drops to 10% of peak load

EO - Young's modulus from initial load-deflection compliance

wo - Area under load-deflection curve

n.m.

n.r.

~ values not measured

31
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Antiplane Shear Fracture Tests (Mode llI)

By Zdenek P. Bazant, Pere C. Prat, and Mazen R. Tabbara

Mode [l (antiplane) shear-fracture energies of concrete and mortar
were measured on the basis of the size-effect law. The specimens were
cylinders with a circumferential notch at their midlengths, subjécted
10 pure torsion at zero axiaf force. The specimens were geometrically
similar and their sizes varied as 1:2:4. The mortar specimens were
observed 10 behave in a manner closer to linear elastic fracture me-
chanics than did the concrete specimens. The ratio of Mode Il to
Mode | (1ensile) fracture energies was found to0 be about 3 for con-
crete and about 8 for mortar. The results indirectly indicate that a
volume expansion of the sheared fracture-process zone may be a sig-
nificant mechanism causing transverse tensile siresses across the liga-
ment. The size-effect measurements also yield an estimate of the size
of the fracture-process zone, which is found to be nearly the same as
Jfor Mode [ fracture. .

Keywords: concretes; cracking (fnemho:' dimensional analysis; esergy; mes-
surement; mortars (material); shear teRs; specimens; tensile stresses; tesis.

Until recently it had been: generaily accepted that
fracture in concrete is always tensile and propagates in
the direction normal to the maximum principal stress.
Such behavior is indeed observed in the diagonal shear
failure and torsional failure of beams, as well as in
punching-shear failure of slabs. The existence of shear
fracture in brittle materials has been denied, and even
such claims as ‘‘shear fracture is sheer nonsense’’ have
been heard.

Doubts arose, however, when dynamic tests of cer-
tain concrete box structures loaded by short pressure
puilses caused the top slabs to fail by direct shear next
to the supports. As a result of this and other experi-
ences, tests of shear fracture were undertaken at
Northwestern University’ using edge-notched speci-
mens of losipescu geometry loaded in Mode 11 (in-plane
shear). The size-effect method was used in those tests to
determine the Mode II fracture energy. Interpretation
of those tests was not unambiguous, because a per-
fectly antisymmetric Mode II field at the crack tips is
not achieved in this tvpe of test, not only in the actual
nonlinear behavior, bur also according to the theory of
elasticity. The elastic solution of the stress field near the
crack tips in those specimens indicates the presence of
compressive stresses across the crack-line extension,
which represents deviations from the ideal Mode [1
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conditions. In theory, a perfect Mode [I shear loading
could be achieved in an elastic specimen of that type,
but this would require applying additional antisymme-
tric tensile forces, as shown in Reference I, which
would be difficult to carry out. Moreover, as pointed
out by Ingraffea and Panthaki® in a dialogue with Ba-
2ant and Pfeiffer,’ the failure of these specimens might
be partly caused by axial compression splitting (similar
to the Brazilian split-cylinder test), which again pre-
vents attaining pure Mode II shear conditions.

To gain additional insight, BaZant and Prat* decided
to study Mode III (antipiane shear) rather than Mode
Il (in-plane shear). Using cylindrical specimens with a
circumferential notch subjected to torsion (Fig. 1 and
2), they carried out Mode I1I {racture tests of concrete,
which apparently had not been conducted previously.
According to the theory of elasticity, the applied torque
produces a stress and deformation field that is per-
fectly antisymmetric with regard to the crack plane;
thus, a planar crack represents a pure shear crack. The
size-effect method** has been used to determine the
Maode III fracture energy of concrete G/". Surprisingly,
the value of G,/ obtained from these tests has been
much smaller than the value of the Mode II fracture
energy G, obtained from the preceding tests of notched
beams, although still larger than the Mode I (opening
mode) fracture energy G,. It apperared that the value
of shear-fracture energy might not represent a material
constant but could be a function of the normal stress
across the crack plane, and that the value of this stress
might in turn depend on the volume changes in the
fracture process zone. This conclusion was supported
by the finding that torsional loading in a triaxial tor-
sional testing machine that produces axial confinement
and prevents free axial expansion of the cylinder leads
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to a nonplanar failure mode; see the conical failure
surfaces in Fig. 3.

The purpose of this paper is to examine these ques-
tions more deeply, report the results of a larger series
of Mode III failure tests that inciuded mortar speci-
mens as well as concrete specimens, determine the
Mode III fracture energy, and examine the applicabil-
ity of the size-effect law. An additional purpose is to
extract from the test resuits an estimate for the length
of the fracture process zone. The significance of this
research is expected to be an improved ability to pre-
dict brittle failures of concrete structures.

The torsional fracture specimen conceived by BaZant
and Prat* was independently also introduced by Suresh
and Tschegg’ to study mixed-mode fracture of fatigued
ceramics. Using combined torsional-axial loading, Su-
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Fig. 1 — Torsional circumferentially notched fracture
specimens
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resh and Tschegg determined a failure surface in terms
of the Mode IIl and Mode 1 stress-intensity factors.
Their conclusions on the effect of axial stresses are
similar to those made by BaZant and Prat and are ex-
tended further here.

EXPERIMENTAL INVESTIGATION

To determine fracture energy by the size-effect
method, geometrically similar specimens of signifi-
cantly different sizes needed to be tested. Similar cir-
cumferentially notched cylinders of diameters d = 1.5,
3, and 6 in. (38, 76, and 152 mm) were used. The
length-to-diameter ratio was ¢/d = 2. Circular notches
of thickness %, in. (1.6 mm), located in the middle
plane perpendicular to the axis of the cylinders (Fig. 1
and 2), were created by casting. The notch depth was a,
= d/4.

in tests

Fig. 3 — Conical failu~~ surface observed in previous
tests with restrained axia: displacement
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Fig. 4 — Specimens during testing in MTS machine

The torque T was applied at each end of the speci-
men as a couple, as shown in Fig. 1 and 4. The wedge-
shaped cutouts on which the |oads were applied were
cast in a standard cylinder mold in which wooden in-
serts were placed. Each end-couple had an arm of 24/3
and was applied in a plane perpendicular to the axis of
the specimen at a distance of d/8 from the ends.

Two test series were carried out, one for concrete and
one for mortar. Each test series consisted of nine tor-
sional specimens, three for each size (Fig. 2), plus three
companion cylinders 3 in. (76 mm) in diameter and 6
in. (152 mm) long, to test for compression strength. All
the specimens and control cylinders for each test series
were cast from the same batch. The means and stan-
dard deviations of the compression strength f after 28
days of moist curing are given in Table 1. The 28-day
f{ values for concrete were not measured directly, but
calculated from the compression strength f:(35), mea-
sured at the time of the tests at which the age of con-
crete was 35 days. The adjustment for age was based on
the approximate formula'® /(1) = f/(28) {1 = 0.277 log
(2. 28)] from which £)(28) = 0.974 f/(35).

All specimens were cast with the longitudinal axis in
a vertical position. to insure statistical homogeneity and
1sotropy within the notch plane. The concrete mix had
a water-cement ratio of 0.6, and a cement-sand-gravel
ratio of i:2:2 (all ratios by weight). The concrete had
maximum gravel size 4, = 0.5 in. (12.7 mm) and max-
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Table 1 — Compression strength £, psi

Mix Mean i Siandard deviation
Concrete §633 i hind |
Mortar ! 5365 624

imum sand-grain size of 0.19 in. (4.8 mm). The aggre-
gate consisted of crushed limestone and siliceous Lake
Michigan beach sand from llinois. ASTM C 130 Type
[ portland cement, with no admixtures and no air-en-
training agents, was used. The mortar mix had a water-
cement ratio of 0.5 and a cement-sand ratio of 1:2. The
same sand as for the concrete specimens was used, i.e.,
the maximum aggregate size was d, = 0.19 in. (S mm).
The aggregate composition was thus the same as for the
concrete specimens except for the omission of gravel.
The water-cement ratio differed {rom that of the con-
creie specimers in order to achieve approximately the
same workability.

The specimens were cast in waxed cardboard moids
from which they were removed after one day. Subse-
quently, they were cured in a moist room at 95 percent
humidity and 80 F temperature uatil about 1 hr before
the test. The tests of mortar specimens were made at
the age of 28 days. The age of the concrete specimens
at the time of test was 35 days, instead of the standard
28 days, because of a delay due to the repair of equip-
ment. Fig. 4 shows the specimens of all sizes installed
in the testing machine. The values of the strength and
fracture energy for the age of 28 days were obtained by
adjusting the 35-day values.

Fig. § exhibits the fractured concrete specimens after
testing and demonstrates that the fracture surface was
planar and did not propagate in the direction normal to
the maximum principal stress, which is inclined. A sim-
ilar fracture surface was observed for the mortar spec-
imens. All the tests were carried out at room tempera-
ture in a closed-loop MTS machine under stroke-con-
trol condiuons. The loading rates were chosen such that
the time to maximum load was 3 to 5 min for speci-
mens of all sizes. The size-effect method, used to cal-
culate the fracture energy, required knowledge of only
the maximum load, from which the maximum torque
was then calculated.

SIZE-EFFECT ANALYSIS AND CALCULATION
OF FRACTURE ENERGY

Size effect is understood as the dependence of the
nominal stress at maximum load (failure) r, on a char-
acteristic dimension of the specimen 4, when geometri-
cally similar specimens or structures are considered. In
the case of three-dimensional similarity. r, is generally
defined as =y = CP’d?, whers P = maximum load. d
= characteristic dimension of the body. ana C = ar-
bitrarv nondimensional constant. For the present spec-
imens vy = 167 '=d' = CP:d*. where T = maximum
torque: C = |6R, =d. which is constant since R. & =
constant for geometrically similar specimens; and 7 =
PR where R is the arm of the force couple appiied at
the ends. Note that the vaiue of C has no effect on the
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values of fracture energy given by Eq. (3), which fol-
lows. The value of 7y as defined represents the maxi-
mum elastic stress if there were no notch or crack.

Because the cracks in concrete propagate with a rel-
atively large microcracking zone which blunts the frac-
ture front, the size effect represents a transition be-
tween the plastic limit analysis for which there is no size
effect (i.e., 7y is constant), and the classical linear-elas-
tic fracture mechanics for which the size effect is the
strongest possible and which is of the type r, ~ d-*".
The transition may be described by the approximate
size-effect law®

d \-*
r~=Bf,'<l+-):; (1)

where B and A, are empirical constants, d, is the maxi-
mum size of aggregate, and f; is the tensile strength of
concrete. Eq. (1) has been derived in References § and
11, and for three dimensions in Reference 12. It has
been experimentally validated in Mode | (opening)
fracture® and was also found to approximately apply to
the quasi-Mode I (shear) fracture tests in Reference I,
and to diagonal shear."” Tests showed that Eq. (1) is
also applicable to various brittle failures of concrete
structures, such as failure of beams in torsion, punch-
ing-shear failure of slabs, failure of pipes, etc.i*'*

To determine parameters B and X\, Eq. (1) may be
transformed to0 the form
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Fig. 5 — Fractured specimens after testing, showing the JSailure surfaces

fl)z 1 <i\‘ R
<r~ “Fn\d) T E @

Eq. (2) represents a linear relation between (f’/'7.)* and
d/d,, and may be rewritten as ¥ = 4X + C, where Y
= (fi/r ) X =d/d,, C = 1/B and 4 = C/\,. A
linear regression of the test results may te used to de-
termine 4 and C, from which B = C-"?and A\, = C/
A. The regression analysis also yields the statistics of
the errors. Fig. 6 and 7 give the coefficient of variation
wyy Of the vertical deviations from the regression line
and the correlation coefficient p.

As proposed in References 11 and 12, the con-
crete fracture energy G, may be uniquely defined as the
energy release rate required for crack propagation in an
infinitely large specimen. In theory, this definition must
yield resuits that are independent of both the size and
the shape of the specimen, provided that the correct
size-effect law is known. The exact size-effect law is
unknown, but the approximate size-effect law in Eq. (1)
has been shown to be adequate for practical purposes,
and valid for the size range 1:20 regardiess of specimen
shape. The following formula has been derived™*

= glao)

Gy AE,

fd, K}

notch depth; r = radius of the
15

in which ay = ay/r; g,




Strength Criterion
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Fig. 6 — Results from tests of concrete sp>cimens: (a)
linear regression, and (b) size effect

Table 2 — Fracture energy G, ib/in. (N/m)

Mix Mode | Mode 11 Mode 111
Concrete 0.22 (39) 6.30 (1104) 0.61 (107)
Mortar 0.13 (23) 3.34 (58%) 1.01 (17T

cylinder; £, = modulus of elasticity of concrete; f; =
direct tensile strength of concrete; 4 = 1/(B3\,) =
slope of the regression line as aiready defined; g(x,) =
nondimensional energy release rate of the specimen ac-
cording to the linear elastic fracture mechanics, which
can be found for the basic specimen geometries in text-
books and handbooks,"”'* and can in general be deter-
mined by linear finite element analysis. For the notch
depth of d/4(i.e., ay = 0.5), @ (a,) = 6.99 (1 + v)
where v = Poisson’s ratio. In the calculations it was
assumed that v = 0.18.

The tensile strength was not measured but was esti-
mated from the formula /7 = 67, where f and f7 are
in psi (6895 Pa) and /7 = standard cylindrical compres-
sion strength. Since the slope A of the linear regression
plots is proportional to f'3, an error in f; has no effect
on the fracture-energy values.

The measured maximum torques are plotted in Fig. 6
and 7. The plots at the bottom demonstrate that the
measured 7, agrees with the size-effect law (solid
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Ay~ 1.983
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Fig. 7 — Results from tests of mortar specimens: (a)
linear regression, and (b) size effect

curve). The plots at the top show the regression line,
which yields the mean values of the parameters of the
size-effect law.

The fracture-energy values obtained for concrete in
this manner pertain to the age of 35 days. They were
then transformed to 28 days, by using BaZant and Oh’s
empirical formula®® G, = (2,72 + 0.0214 f]) f? d/E,,
which yields G,(28) = 0.976G,(35). The plots in Fig. 6
and 7 correspond to the 28-day values.

The values obtained for fracture energy are given in
Table 2. For comparison, Table 2 also indicates the
values for Modes [ and I previously obtained from
tests of essentially the same concrete and mortar.

Aside from the fracture energy, the size-effect law
makes it possible to estimate the effective length ¢, of
the fracture process zone, using the formuia®

o 8l)
8' ()

4

¢

in which 2’ (ap) = dg(a)/da at @ = a,. The value of ¢,
represents the effective length of the fracture process
zone for an infinitely larze specimen, which is a2 mate-
rial constant. The present test results yieid the values
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given in Table 3. For comparison, this table also shows
the ¢, values obtained from the previous test results® for
Mode . Notice the good agreement between Mode I
and Mode III results, which suggests that ¢, should in-
deed be a material property. Theoretically, the ob-
tained value of ¢, applies to an infinitely large speci-
men, but because BaZant’s law is not sufficiently accu-
rate for an inifinite size range, the value obtained for ¢,
applies to a size about ten times larger than that of the
largest specimen tested.

ANALYSIS OF RESULTS

According to the size-effect law, the test resuits for
mortar should be closer to linear elastic fracture me-
chanics than those for concrete, for the same speci-
mens. This is confirmed by the present results; see Fig.
6 and 7 where the data points for mortar lie closer to
the straight line asymptote of linear elastic fracture me-
chanics, whose slope is —0.5.

Comparison with the Mode II and Mode I fracture
energies (Table 2) reveals a surprise. The values of G
might have been expected to be about the same as G/,
and much larger than G/. But this has not turned out
to be the case; rather, the measured G/ is much
smaller than G/, but larger than G/. The mechanism to
explain this finding will require deeper study, but we
shall attempt an approximate analysis.

A clue to the source of this discrepancy is provided
by the experimetal observation that the results of shear
fracture tests are very sensitive to the restraint of the
specimen in the direction normal to the fracture plane
(the axial direction of the cylinder for the present tests).
In pilot tests, it was observed that very different resuits
can be obtained if friction at the supports is not elimi-
nated. The confinement of the shear fracture zone due
to an axial friction force produced at the supports can
no doubt raise the value of G, significantly.

For the sake of comparison, another series of tor-
sional tests of Mode [II fracture was carried out with
different equipment—a large triaxial torsional testing
machine, which was very stiff because its §.51 in. dia-
meter test chamber is designed to resist chamber pres-
sures up to 20,000 psi (138 MPa) plus axial forces up to
1,100.000 Ib (4.89 mN). It was not surprising that the
tests :a this machine, which were made at essentially
zero axial displacement at the ends of the cylindrical
specimen, showed a different mode of failure, in which
. the failure surface was conical rather than planar (see
Fig. 3). The axial restraint engenders an axial compres-
sive force, which is known to be capable of altering the
failure mode. The failure with a conical surface is
nevertheless still of a shear type.

To explain the foregoing observations, it is logical to
assume that G, as well as G/ is not a material con-
stant, but rather a material function ¢(N,) of the nor-
mal force N, across the fracture process zone of length
¢,, normal to the shear fracture plane (N, is a force per
unit length of the crack-front edge and has the dimen-
sion N/m). The function & (V) should be the same for
Mode II and Mode 111 shear fractures. For the same N,
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Table 3 — Effective fracture process-zone length
Cp in. (Mm)

Mix Mode | Mode 11
Concrete 0.60 (15) 0.66 (17
Monar 0.06 (1.9 0.04 (1.0
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Fig. 8 — Transverse stresses and inclined microcrack-
ing induced in the fractire-process zone in shear-frac-
ture (ests

we should have G' = G/ = G/ = shear fracture en-
ergy (regardless of the mode) such that

G = &(N) (%)

That G/ must in general strongly depend on N, has
already been corroborated in previous work' by finite
element analysis of Mode I fracture tests. In fact, that
study made the even more general assumption that both
Mode [ and II fractures can be modeled by the same
stress-strain relation for the fracture process zone. The
reason for different effective values of the fracture en-
ergy in Modes I and II can be found in the fact that, in
shear, the microcracks in the fracture process zone are
not parallel to the fracture plane, but are inclined to it
by angle « [see Fig. 8(e) and (f)]. The column of intact
material between adjacent inclined cracks carries
compression force F.. This force has an axial compo-
nent F, which must be resisted together by the tensile
stresses in the undamaged portions of the ligament [g,
in Fig. 8(a)] and by the axial force provided by the sup-
port. If axial displacements are prevented, the inclined
compressive forces F, are high and can offer a large re-
sistance to shear. Hence, .he apparent values of frac-
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:ure energy must be large. If the axial displacements are
free, the inclined compression forces must vanish and
thus cannot contribute to transmit shear stresses across
the fracture process zone, and then the apparent value
of shear fracture energy is small.

The action just described was exhibited by a finite
element model with a tensile softening stress-strain re-
lation for the fracture process zone. Using such a
model, BaZant and Pfeiffer’ showed that the results of
both Mode [ and Mode II fracture tests can be matched
with the finite element program using the same mate-
rial properties. In this finite element analysis, one does
not directly use the fracture energy. Rather, one uses a
triaxial stress-strain relation such that the area under
the implied uniaxial tensile stress-strain diagram equals
G/ w,, where w, = effective width of the fracture pro-
cess zone.

As a crude approximate description of the rele of the
confining force N, we may write the longitudinal equi-
librium condition assurmning a zero axial resuitant in the
cross section. With the notation g= average tensile
stress in the tensile zone of the ligament and r, = ra-
dius of this zone, and the equilibrium condition is »r}
G = =2xry N or N, = — 3, ri/r, where r; = radius up
to the location of the compression force resultant N, in
the fracture process zone [Fig. 8(a) and (b)}. 'Ve may
assume that », = ks, where k, = empirical constant
greater than 1 but close to 1. Approximately, we may
write @, = k,f;, where k, = empirical constant of the
order of 1, perhaps /-, = 0.5 to 1.0, and f] = direct
tensile strength of concrete, Solving for N, we get

Nl";u—"l (6)

For the previous Mode 1] fracture tests of Bazant and
Pfeiffer,' a similar equilibrium condition for the frac-
ture-plane cross section yields tensioned portion of the
ligament (Fig. 8(c) and (d)]. Setting again 3, = k,f, we
get

Ny = -ck f} M

Let us assume that function #(V,) can be approximated
linearly, i.e., ®(N) = G = k,N,, where G = shear
fracture energy at zero confining stress and X, = non-
dimensional constant. For N, = ¢, f] the fracture en-
ergy should become approximately zero, and so we
have

OoN) =k, (¢, /7 = N) 8

Using Eq. (6) and (7) in Eq. (8), we obtain

G ke )
G" ¢ + rk/2K,

Since the fracture energy is defined for the limit case of
18

an infinitely large specimen, we must assume that
¢, <€ ¢, and ¢, < r;; therefore

le/4 c
5;",', = 2, ;: (10)

According to the results of the tests made (Table 2),
G//GM = 10 for concrete and 3.3 for mortar. This ra-
tio can be obtained from Eq. (10), given that ¢, = r,,
and if we assume intuitively that &, = 1.5,¢, =
0.7¢c,andr, = 0.21 ¢, for concrete; and Kk, =
1.5, ¢, = 0.70 ¢, and r, = 0.64 ¢, for mortar. These
values do not appear to be out of the range of the rea-
sonably expected behavior. So we may conciude that
the difference between G} and G} is not all that sur-
prising and might be explicable by a rational theory.
But further tests as well as finite element studies will be
required.

The previous analysis is based on the assumption of
a linear dependence of G, on N,. In reality, this depen-
dence must be expected to be nonlinear. Matesials such
as concrete exhibit a brittle-ductile transition at a cer-
tain confining pressure p,; for ordinary concrete, ap-
proximately, p.s = 10,000 psi (69 MPa). Above this
pressure value, there is apparently no strain softening
and no fracture, and so G, — o. To satisfy this condi-
tion, the nonlinear dependence of G, on N, may be as-
sumed to have the form

G/ = ¢(1V/) = On(N; - Nu)-..*' a, (N, < Ny (1)

where «a,, a;, and n = empirical positive constants and
Ny = ¢Py. Constants a, and a, may be determined
from two conditions: (1) G} = 0 for N, = ¢,f;, and (2)
G, = G, for N, = 0 where G} = shear fracture en-
ergy at zero normal force across the ligament. This
yields

(Ny = Ny)~* = (Ny = Np)~*

G = G (=N = (N = Np)™*

(12)

where N, = ¢,f/. This nonlinear form of the function
®(N)) can considerably alter the values in Eq. (10)
which correspond to the observed ratio G'/G}.

The foregoing analysis has one weakness in that the
size-effect law in Eq. (1), which underlies the determi-
nation of fracture energy, might not be valid when the
value of the normal force N, across the fracture-pro-
cess zone is different for various sizes. [f this were so,
a more sophisticated extrapolation to infinite size would
be required to obtain the fracture energy value. It re-
mains to be seen whether this aspect can significantly
affect the present results for the practicai size range.

CONCLUSIONS
1. The size-effect method can be used to determine
the shear fracture energy of concrete. A cylinder with a
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circumferential notch, loaded in torsion, is a suitable
test specimen and yields consistent resuits.

2. As expected according to the size-effect law, the
test results for the mortar specimens are much closer to
the linear-elastic fracture mechanics than the test re-
sults for the concrete specimens.

3. Although according to the elasticity theory, the
notched cylindrical specimen yields a perfect shear state
(characterized by antipiane symmetry of the stresses
near the crack-front edge), it does not yield such a per-
fect state in practice because of nonliinear effects. These
effects result from the transverse confining normal
stresses which are produced in the ligaraent cross sec-
tion due to volume expansion from microcracking in
the fracture process zone.

4. The value of the fracture energy of concrete ob-
tained from Mode III tests is about three times larger
than the Mode [ fracture energy and about ten times
less than the Mode 11 fracture energy obtained with the
double-notched four-point-loaded specimens used in
previous tests.' For mortar, it is about eight times larger
than the Mode I fracture energy and three and one-halif
times less than the Mode II fracture energy.

5. The discrepancies between the Mode [l and Mode
I1I shear-fracture energy values seem to be explained by
inclined microcracking in the fracture-process zone, the
associated volume change, and the induced compres-
sive force across the fracture front. Because of the in-
fluence of this force, the shear fracture energy for
Modes I and III (unlike the Mode I fracture energy) is
not a material constant but must be considered to be a
material function of the confining normal force.

6. The fact that the relative difference between the
Mode III and Mode I fracture energies is less for mor-
tar than for concrete indicates that the confining force
across the fracture process zone {Eq. (6)] is apparently
less for mortar than for concrete. This might be ex-
plained by a smaller volume expansion of mortar.
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APPENDIX A7

SHOULD DESIGN CODES CONSIDER FRACTURE MECHANICS SIZE EFFECT?

By Zdenék P. BaZant
Professor of Civil Engineering
Center for Advanced Cement Based Materials
Northwestern University-Tech 2410, Evanston, Illinois 60208-3109
Abgt;agt.- The paper reviews recent theoretical results and analyzes
experimental data on size effect in brittle failure, which causes release of
potential energy in reinforced concrete structures. After summarizing the
size effect law and explaining the novel concept of a brittleness number, the
results of recent Northwestern University tests of diagonal shear failure,
punching shear failure, torsional failure and pullout failure are discussed.
These results, which were obtained on geometrically similar specimens with
sizes differing over a broad range, are found to be in e :ellent agreement
with the theoretical size effect law. The experimental evidence is much
stronger than that which was previously obtained by analyzing a large amount
of test results from literature, which were not obtained on geometrically
similar specimens and were limited to a narrow size range. It is also found
that the test data on diagonal shear disagree with Weibull-type theory of the
size effect, thus strengthening the theoretical argument against the use of
these statistical theories for concrete structures whose maximum load is much
larger than the cracking initiation load. The test results indicate that the
presently considered fracture mechanics size effect ought to be incorporated
into the formulas for the contribution of concrete to the ultimate load
capacity in brittle failure of concrete structures. It is shown that such
formulas can be based on the brittleness number. However, its prediction in
the absence of empirical data for the structure type of interest will require

some further research.




Introduction

It has long been known that ultimate loads of concrete structures exhibit
size effect. The classical explanation has been Weibull'’s weakest-link theory
which takes into account the random nature of concrete strength (Weibull,
1939; Zaitsev and Wittmann, 1973; Mihashi and Zaitsev, 1981; Mihashi, 1983;
and Carpinteri, 1986). However, for reasons briefly explained in the
Appendix, it now appears that the statistical theory does not suffice to
describe the essence of the size effect observed in brittle failures of
reinforced concrete structures and plays only a secondary role. The main
aspect of the size effect in this type of failures is det rather
than statistical, and is due to the release of the stored potential energy of
the structure into the front of the cracking zone or fracture. This
phenomenon is properly described by fracture mechanics in its recently
developed nonlinear formulation which takes into account the distributed
.nature of cracking at the fracture front.

The purpose of this paper is to analyze the existing evidence as well as

review some recent results obtained at Northwestern University.

the escriptio e e
The size effect is defined By comparing the ultimate loads (maximum

loads), Pu , of geometrically similar structures of different sizes. This is

done in terms of the nominal stress oy at failure. When the o,,-values for ge-

N
ometrically similar structures of different sizes are the same, one says that
there is no size effect. The size effect represents a dependence of oy on the
structure size (characteristic dimension), d. For two-dimensional similarity,
N

a two-dimensional structure. The characteristic dimension, d, may be defined

- Pu/bd, and for three-dimensional similarity, oy = Pu/d2; b = thickness of

as any dimension of the structure, e.g., the depth of a beam or its span,

since only the relative values of oy matter.




According to plastic limit analysis, as well as elastic analysis with
allowable stress or any theory that uses a failure criterion in terms or
stresses or strainms, oN is independent of the structure size. This can be
illustrated, e.g., by the elastic and plastic formulas for the strength of
beams in bending, shear or torsion (Bazant, 1984).

Another theory of failure, conceived by Griffith (1921) and introduced to
concrete by Kaplan (1961), is fracture mechanics. It was Reinhardt (1981a,b)
who proposed that fracture mechanics should be used to describe the size
effect in diagonal shear failure. He also showed that the size effect of
classical, linear elastic fracture mechanics agrees reasonably well with some
tests, although later it was found that nonlinear fracture mechanics is
necessary in general.

In the linear form of fracture mechanics, in which all the fracture
process is assumed to be happening at a point -- the crack tip -- the size
effect is the strongest possible. In the plot of log oy Vs. log d, it is
described by an inclined straight line of slope - 1/2 (Fig.l), provided that
the cracks at the moment of failure of geometrically similar structures of
different sizes are also similar. This is true regardless of the structure
shape.

Concrete structures in reality exhibit a transitional behavior between
the size effect of strength or yield criteria (i.e., no size effect),
represented in Fig. 1 by a horizontal line, and the size effect of linear
elastic fracture mechanics; see the curve in Fig. 1. This size effect is
generally ignored by the current design codes, but it now appears very
important.

The aforementioned transitional size effect can be most simply explained
by considering uniformly stressed rectangular panels of different sizes, as
shown in Fig. 2. Each panel is assumed to have a weak spot in the middle of

the left side, from which fracture originates. For a brittle heterogeneous




material such as concrete, it is important to take into account a relatively
large zone of distributed cracking at the fracture front. The size of this
zone is not proportional to the structure size but is approximately related to
the maximum aggregate size. In the simplest approximation, it may be assumed
that the width, h, of the cracking band at the fracture front is approximately
constant, independent of the structure size. One may also assume the length
of the fracture, a, to be proportional to dimension d of the structure, i.e.,
a/d = constant.

Formation of a fracture with crack band of thickness h and length a ﬁay
be imagined to release the strain energy of density aNz/ZE from the cross-
hatched area in Fig. 2 (E = elastic modulus of concrete). When the fracture
extends by Aa, the additional strain energy that is released into the fracture
front comes from the densely cross-hatched strip of horizontal dimension Aa.
Obviously, the larger the structure, the larger is the area of the cross-
hatched strip, which is given by haa + 2kada where k = empirical constant
depending on the structure shape. Now it is important to note that in a
larger structure the energy that is released into a certain small extension Aa
of the fracture comes from a larger area. Since the energy dissipated by
fracture per unit length (and unit thickness) is approximately equal to the
fracture energy, Ges which is a material property, the load for a larger
structure must be less so that the total energy release from a larger area
would be the same. Hence the size effect.

The strain energy released from the densely cross-hatched strip is (haa +
2baaa) aﬁ/ZE. Setting this equal to the dissipated energy GfbAa, one obtains

the size effects law (Bazant 1984):

' -3
oy = BELL+ B, = /4y (1)




in which 8 is called the brittleness number of the structure and fé represents
the direct tensile strength. It must Le kept in mind that Eq. 1 is only
approximate, valid within a size range of up to about 1:20. For a broader
size range, a more complicated formula would be required. Nevertheless, the
accuracy and size range of Eq. 1 seems sufficient for most practical purposes.

Since from some viewpoints the length of the distributed cracking zone at
fracture front is more important than the width, it is interesting to note
that a similar derivation, with the same result (Bazant, 1984; Bazant and
kazemi 1988) can be made for a sharp line crack having a crack band of
constant length at the front. For more complicated structural geometries, the
foregoing type of reasoning gets difficult, however, Eq. 1 can be derived
generally by dimensional analysis and similar arguments (Bazant, 1984). This
general derivation rests on two basic hypotheses: (1) The propagation of a
fracture or crack band requires an approximately constant energy supply per
unit length and width of fracture, and (2) the potential energy released by
fracture from the structure is a function of both the length of the fracture
and the size of the cracking zone (fracture process zone) at the fracture
front.

The transitional size effect curve in Fig. 1 is also obtained by
numerical models of the microstructure, such as the random particle model. 1In
this model, a system of aggregate particles is generated randomly and each
large aggregate particle is considered as a finite element interacting with
its neighbors through a contact element representing the contact zone (Bazant,
Tabbara, Kazemi, and Pijaudier-Cabot, 1989). Furthermore, nonlocal finite
element models in which localization of cracking is restricted to a zone of a
certain minimum size, also exhibit the same transitional type of size effect,
while ordinary finite element codes are incapable of representing it (Bazant

and Lin, 1988; Bazant and Ozbolt, 1989).




Eq. 1 has been extensively verified experimentally for both fracture test
specimens and reinforced concrete structures. In the case of test specimens,
similarity of the fracture shape and length is enforced by providing
geometrically similar notches in specimens of different sizes. In real
concrete structures, from which notches are absent, Eq. 1 is applicable only
under the following two additional hypotheses: (3) the failure modes (i.e.,
fracture shapes and length) of geometrically similar structures of different
sizes are, at the moment of maximum load, also geometrically similar, and (4)
the structure does not fail at crack initiation. But this is not a serious
limitation; a good design practice of course requires the maximum load to be
much higher than the cracking initiation load, and this is to some extent also
enforced by design codes.

The characteristic of the failure process which gives rise to the size
effect is the propagating nature of failure. In plastic limit analysis the
failure is always nonpropagating, simultaneous, with all the parts of the
structure moving simultaneously in proportion to one parameter. The typical
characteristic of such failures is that the load-deflection diagram, after
reaching the maximum load, exhibits a horizontal plateau. It can be shown in
general that when the horizontal plateau is lacking, 1.e., the load decreases
after the peak with increasing deflection, the failure cannot be simultaneous
but must be propagating. Propagating failures need to be generally described
by fracture mechanics, and they always exhibit size effect (of the energy

release type).

Brittleness Number

Distinctions between brittle and ductile failures have long been
emphasized in concrete textbooks, however the meaning of brittleness has been
left hazy, unquantified. The notion of brittleness is closely connected with

the size effect. Brittleness increases with size. It can be generally shown




that in small structures the load decreases relatively slowly with deflection
after the peak, while in a similar large structure the load drops rapidly
after the peak, and in a very large structure the load-deflection curve even
exhibits the so-called snapback instability in which the load-deflection curve
becomes vertical after which the failure is dynamic. Recognizing this
connection, various authors, including Gogotsi, et al. (1978), Homeny, et al.
(1980) for ceramics in general, and Carpinteri (1982) and Hillerborg (1985 )
for concrete in particular, proposed brittleness to be quantified by some
brittleness number depending on the structure size, d. Unfortunately,
Gogotsi, Homeny, Hillerborg, Carpinteri’s brittleness numbers are not
independent of the structure geometry and thus cannot be used as universal,
absolute characteristics of brittleness (e.g., a brittleness number equal to
2 could mean a very brittle behavior for one structure geometry and a very
ductile behavior for another geometry). These numbers only allow comparing
the brittleness of similar structures.

A universal, absolute measure of brittleness is offered by the size
effect law (Bazant, 1984), although it is only approximate since the exact
size effect law is not known. As already mentioned, the ratio 8 = d/d.O may
be taken as a brittleness number (Bazant, 1987; Bazant and Pfeiffer, 1987).
The value d-do (or B = 1) corresponds in the size effect plot of log oy Vs-
log d to the point where the horizontal asymptote for the strength or yield
criterion intersects the inclined asymptote for the linear elastic fracture
mechanics (Fig. 1). For B < 1, the behavior is closer to plastic limit
analysis, and for 8 2 1 it is closer to linear elastic fracture mechanics.
With a practically sufficient accuracy, the nature of structure response and

the type of analysis may be characterized as follows (Bazant, 1987):

B < 0.1 plastic limit analysis
Oel s 8 < 10 nonlinear fracture mechanics (2)
g > 10 linear fracture mechanics




For B < 0.1, the error of plastic limit analysis is < 4.7% of Iy and for 8 >
10, the error of linear elastic fracture mechanics is < 4.7%, compared t: the
nonlinear fracture mechanics solution in which the finite size of the fracture
process zone (cracking band) is taken into account. If an error under 2% is
desired, then the nonlinear range must be expanded to 1/25 < g8 < 25.

Let us now consider the determination of the brittleness number when size
effect data are absent. Two formulas have been derived for this purpose, one
based on matching the size effect law to the asymptote of plastic limit
analysis, and the other one based on matching the size effect law to linear

elastic fracture mechanics. They read

£12

g - B’s(ac,)ﬁ‘;—f- (4)
_ g(ao) g_ 5)
g’ (ag) c¢

in which g(ao) is the nondimensional energy release rate corresponding to the
initial relative crack length ay=- aod according to linear elastic fracture
mechanics, g'(ao) is its derivative, and cg is the effective length of the
fracture process zone (defined for extrapolation to a specimen of infinite
size), which is a material property.

The first formula, Eq. 4 (Bazant, 1987; Bazant and Pfeiffer, 1987), is
more accurate for small sizes, and the second formula, Eq. 5 (Bazant and
Kazemi, 1988), is more accurate for large sizes. With either formula, cal-
culations of the brittleness number necessitates knowing the shape and length
of the equivalent linear elastic crack at maximum load. This crack is
precisely defined only by extrapolation to a similar structure of infinite

size. For typical concrete structures it is not yet clear at present what




shape and length this equivalent crack should have. However, once this shape
and length are known, g(ao) and its derivative can easily be calculated with a
linearly elastic finite element program, and could easily be tabulated for
typical structures. For the calculation of B, the existing design formulas
based on plastic limit analysis can of course be used.

It might also be that simple empirical formulas could be obtained for
various typical structure shapes to determine the value of the transitional
size do, e.g., in relation to the cross section dimension and the maximum ag-
gregate size, da' Then the brittleness number immediately results as 8 = d/dO‘

In view of the universality of the size effect law in Fig. 1 and the
brittleness number, it appears that a simple adjustment can introduce the size
effect into the existing code formulas based on limit analysis. It suffices
to take the existing formula for the nominal stress due to concrete at ulti-

mate load, Vg and replace it by the expression:

-3 min
vu(l + B) [ 2V, ] (6)
Here we indicate that there might be a lower limit vumin on the nominal
strength, since there can be a transition to some nonbrittle frictional
failure mechanism (it seems, for example, that this might be the case in the

Brazilian split-cylinder test).

evio t
After the size effect law has been formulated, much effort has been
devoted to comparing and validating it on the basis of the test data in
literature. The efforts were especially focused on the diagonal shear failure
of longitudinally reinforced concrete beams (Bazant and Kim, 1984, 1985;
Bazant and Cao, 1986; Bazant and Sun, 1987). The latter study included

essentially all the experimental data that could be extracted from the




literature, consisting of 461 beam tests. After appropriately eliminating the
effect of numerous other factors according to various known approximate

formulas, the existence of a size effect has been clearly demonstrated. It

was also shown that incorporation of the size effect law in Fig. 1 into the

existing ACI or CEB-FIP design formulas for the contribution of concrete to

the ultimate strength of beams in diagonal shear brings about a distinct

improvement, reducing the coefficient of variation of the deviations of the
test results from the design formula.

Unfortunately, however, the results of these studies have not allowed any
strong conclusions. The reason has been that, even after filtering out the
effects of other factors, the statistical scatter has been enormous. The
tests have been done at various laboratories, on various concretes, and on
beams of various geometries. Most tests did not include various sizes. Those
few test series that did (Walraven, 1978; Bhal, 1968; Kani, 1967; Leonhardt
and Walther, 1962; Taylor, 1972; Chana, 1981; Risch et al., 1962) did not
include a sufficiently broad range of sizes and, most seriously, did not use
geometrically similar specimens. The same is true of the latest and largest
study of the size effect in diagonal shear presented by Iguro, Shioya, Nojiri
and Akiyama (1984).

The lack of geometric similarity in the previous test series has been the
most serious impediment against their exploitation for the present purposes.
To extract information on the size effect, adjuﬁtments for all the other
influencing factors had to be made first. But since the influences of various
other factors are known only approximately, a considerable error is inevitably
introduced by such adjustments. This causes enormous scatter, which obscures
the underlying trend of the size effect (Bazant and Kim, 1984, Bazant and
Cao, 1984, Bazant and Sun, 1984, Bazant and Sener, 1984).

Aside from unprestressed beams without stirrups, the previous studies of

test data from the literature dealt also with prestressed beams without
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stirrups and with unprestressed beams with stirrups. In the latter case, the
portion of the carrying capacity due to stirrups is of course free of size
effect as the stirrups fail in a ductile manner. However, despite
considerable scatter, the analysis of the data showed that, in contrast to the
current design approach, the carrying capacity due to stirrups (which exhibits
no size effect) is not simply additive to that due to concrete (which does
exhibit a size effect). Rather, the presence of stirrups appears to have a
strengthening influence on the portion of the carrying capacity due to
concrete.

Similar problems have been encountered in an attempt to evaluate the size
effect from the existing data on punching shear failures and torsional
failures although, for the latter, the test results of Hsu (1968), Humphrey
(1957), and McMullen and Daniel (1975) provided at least a clear indication of
the existence of a significant size effect.

To sum up, despite a clear revelation of size effect, the enormous
scatter and narrow size range of the data from the literature has made it
impossible to conclude which size effect theory is the correct one. For
example, the present size effect law fits most data from the literature no
better than a formula based on Weibull-type statistical theory. This state of
affairs, for example, permits one to conclude on the basis of the test data of
Iguro et al. (1984) that the Weibull-type theory should be acceptable for
diagonal shear failures of beams, even though its use is in fact questionable

on physical grounds as already mentioned.

\'4 W s e t
In view of the aforementioned limitations of the existing experimental
evidence, a systematic testing program of brittle failure of reinforced
concrete structures has been initiated at Northwestern University. To keep

the costs down, all the tests were on concrete with reduced-size aggregate
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(maximum sizes 3/8 or 1/4 in.). The tests included the diagonal shear failure
of beams without stirrups (Bazant and Kazemi, 1989), the punching shear
failure of circular slabs reinforced at bottom surface (Bazant and Cao, 1987),
the torsional failures of plain and longitudinally reinforced concrete beams
(Bazant, Sener and Prat, 1988), and the pullout failure of reinforcing bars
(Bazant and Sener, 1988). The results of these tests, whose details are given
in the aforementioned articles, are shown as the data points in Fig. 3-6. The
data for punching shear (Fig. 4) have the size range 1:4, and so have the data
for torsion (Fig. 5a,b) and the data for pullout (Fig. 6).

The tests of diagonal shear consisted of two series. In the first series
(Fig. 3a), in which the size range was 1:4 and in which the longitudinal bars
were straight, it was found that the diagonal shear failure was accompanied by
pullout failure of bars, marked especially for the smallest size. Therefore a
second series (Fig. 3b) was conducted on beams in which the bars had right-
angle hooks at the ends, which prevented the pullout. The second series had
the size range of 1:16. The beam specimens were similar in two dimensions,
i.e., they had the same thickness for all the sizes.

From Fig. 3-6 it is clear that there is a strong size effect. It is also
noteworthy that in the logarithmic scales the size effect curve does not tend
to level off at large sizes, as predicted by fracture mechanics. The optimal
fits according to Bazant’'s law are shown as the solid curves, and it is seen
that the agreement is quite good, especially in view of the inevitable
statistical random scatter of concrete strength in brittle failures. While
the aforementioned studies of test data from literature only confirm the
existence of size effect but could not decide which formula for the size
effect is the correct one, the comparisons in Fig 3-6 can be said to support
Eq. 1. This is especially clear for the second series of the diagonal shear

tests (Fig. 6b), thanks to its broad size range.
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The second series appears to represent the first test results that show
that Weibull-type statistical theory does not apply. According to this
theory, the strongest size effect in two dimensions corresponds to a straight
line of slope - 1/6, whose optimal fit to the present data is shown as the
dashed line in Fig. 3b. One can see that this line clearly disagrees with the
trend of the data and gives too weak a size effect for the large sizes. (This
is true provided one takes the value of Weibull modulus as m = 12, in
agreement with the results of uniaxial tests, and assumes the Weibull
threshold strengths to be oy 0; if this threshold were larger than 0, the
size effect would be even milder than shown by the dashed line in Fig. 3b,
exhibiting an approach to a horizontal asymptote, as shown by the dotted
curve.)

The essential parameter which determines the strength of the size effect
is the transitional size do. This parameter represents a combination of a ma-
terial property with the effect of structure shape. The tests in Figs. 3-6
show that its values vary greatly. From the present limited results, it does
not seem possible to give a simple empirical formula for calculating dg.
Thus, parameter do has to be predicted from Eq. 4 or 5 (d0 = d/8). However,
further research will be needed to determine the shape and length of of the
equivalent linearly elastic crack at maximum load, which is needed to
calculate g(ao). Eventually, of course, geometrically similar tests will have

to be made on real-size beams and slabs with full-size aggregate.

Othex Uses of Size Effect Law and Ramifications
Knowledge of the size effect law is as useful for determining material
fracture properties as it {s for extrapolating laboratory data to real
structures. The material fracture properties needed for finite element
analysis of concrete fracture include the fracture energy and the effective

length of the fracture process zone (alternatively, from these two properties

13




one can determine the critical cracktip opening displacement used as a
fracture parameter in some models). i

In laboratory fracture specimens of typical sizes, the problem is that
the fracture process zone extends over a larger part of the cross section.
Consequently, the size and shape of the fracture process zone is greatly
influenced by the boundaries, i.e., the shape of the specimen. This makes it
very difficult to get unambiguous results by the usual adaptations of linear
elastic fracture mechanics. The problem, however, disappears when one
extrapolates the results to a specimen of infinite size. The point is that,
in a specimen of infinite size, the fracture process zone occupies a
negligibly small part of the structure volume, and so most of the structure is
elastic. As one basic result of linear elastic fracture mechanics, the
asymptotic stress field around the crack tip is exactly the same for any
structure geometry. Thus, the fracture process zone in an infinitely large
specimen is exposed always to the same stresses at its boundary, and so it
must always take the same size and shape, and develop the same stress and
strain distributions. Consequently, the fracture energy as well as the
effective length of the fracture process zone are constants, independent of
structure shape. Thus, the definition of fracture energy and the effective
length of the process zone are unambiguous, exact (Bazant, 1987).

The only problem is that the size effect law that we know (Eq. 1) is only
approximate, which means that the fracture properties obtained on the basis of
Eq. 1 are not exact. However, they should be sufficient for most practical
purposes since Eq. 1 is applicable over a size range up to about 1:20. By
matching the infinite-size extrapolations according to Eq. 1 to the formulas
of linear elastic fracture mechanics, simple expressions for determining the
fracture energy as well as the effective length of the process zone have been
devised (Bazant, 1987; Bazant and Pfeiffer, 1987; Bazant and Kazemi, 1988).

By testing fracture specimens of very different geometries, it was
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demonstrated that the material parameter values obtained by the size effect
method are indeed approximately independent of the structure shape.

The size effect method of determining material fracture properties is not
only unambiguous, but also the simplest, since it requires one to measure only
the maximum load values of specimens of various sizes, which can be obtained
even with the most rudimentary equipment. Other methods require measurement
of the post-peak softening response and unloading response, and necessitate a

closed-loop displacement control which calls for more sophisticated equipment.

Another important question is the effect of aggregate size, and more
generally the influence of concrete composition. In principle, the size
effect law (eq. 1) is valid only for specimens of the same material, which
also implies the same aggregate size distribution. While recognizing that it
is strictly impossible to change aggregate size without changing other
composition parameters of concrete, it was suggested that the value of d,
should be roughly proportional to the maximum aggregate size da' and that the
value of fé in Eq. 1 should be decreased as the aggregate increases. The
formula fé- fg[l + (co/da)l/z] has been proposed for this purpose by Bazant
(1985), in which fg and co = constants. But this formula does not take into
account the effect of aggregate shape, which might be very important according
to the recent tests by V. Saouma at the University of Colorado, Boulder
(private communication, 1989). This aspect is especially important for
concrete dams, for which introduction of fracture mechanics into the failure
analysis is imperative.

The finite element codes for concrete structure which normally utilize
the smeared cracking concept, generally exhibit no size effect, which is an
unacceptable feature of these codes. The finite element codes based on linear
elastic fracture mechanics represent too strong a size effect. The basic

requirement of acceptability of a finite element code for concrete structures
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is that the code should exhibit a transitional size effect. This is achieved
either by codes based on nonlinear fracture process zones (e.g., Hillerborg's
fictitious crack model, or the crack band model) or more generally by nonlocal
finite element codes. To documenét.Fig. 7 compares the results of a finite
element code with nonlocal smeared cracking (Bazant and Lin, 1988) to test

results.

Conclusions

1. While the hundreds of test data available in the literature exhibit
so much scatter that they provide only a relatively weak and ambiguous
evidence for the size effect, merely suggesting its existence, the new
Northwestern University tests of geometrically similar specimens prove the
existence of a strong size effect and also indicate its approximate law.
These new tests include the diagonal shear failure of beams, punching shear
failure of slabs, torsional failure of beams, and pullout failure of bars. 1In
view of this evidence, the existence of size effect must be suspected for all
other brittle failures of concrete structures, e.g., the failures of splices,
anchors and anchorages, the shear failure of deep panels, the cryptodome
failure of the top slab of a reactor vessel, the failure of pipes, and the
failure of concrete dams.

2. The size effect observed in the Northwestern University tests agrees
quite well with the size effect law proposed by Bazant (Eq. 1). This means
that the size effect is caused by the fact that, the larger the structure, the
greater is the release of stored potential energy of the structure into the
front of a propagating fracture or crack band front (provided that the nominal
stress due to load is kept he same), while about the same energy is required
for a unit advance of fracture front, regardless of the size.

3. Although verification by tests of real-size beams with full-size

aggregate will be necessary, it is already clear that the size effect due to
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potential energy release ought to be introduced into all the ultimate load
formulas for brittle failures in concrete design codes, as indicated in Eq. 6.
This means that the existing formulas which are based on the crack initiation
load (at which the present type of size effect is absent) should be either
replaced or better supplemented by formulas based on ultimate load, at which
the present size effect operates.

4, The size effect is inextricably linked to brittleness. The
brittleness, formerly a hazy concept, may be quantitatively characterized by
the brittleness number, B, which, in Bazant’s definition, takes into account
the effect of shape. Generally, the values of the ultimate strength
contribution due to concrete (rather than steel reinforcement), as given by
the existing codes, should be modified by dividing them with the factor (1 +
ﬂ)l/z. Further research, however, is needed to determine the transition size
d, required for the calculation of B when test data for the structure geometry
of interest are unavailable. For this purpose it will be necessary to know
not only the final failure surface but also the shape and length of the
principal crack (or cracking band) at the moment of maximum load.

5. The test results for diagonal shear of beams disagree with Weibull-
type statistical theory, and thus support the theoretical arguments against
the use of these series for concrete structures for which the ultimate load is
much larger than the crack initiation load and a large fracture or cracking
zone grows prior to attainment of the maximum load.

6. The basic criterion for acceptability of a finite element code for
concrete structures ought to be that it must exhibit a transitional size
effect between plastic limit analysis and linear elastic fracture mechanics.
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Appendix.-Is Wejbull'’'s Statjstical Theory Applicable?

Traditionally, the size effect has been explained statistically, by
randomness of strength. The failure load of a chain is determined by the the
strength of the weakest link in the chain, and the size effect arises from the
fact that the longer the chain, the smaller is the minimum strength that is
likely to be encountered in the chain. This explanation, which is no doubt
correct for the failure of long uniformly stressed bars, is described by
Weibull’s weakest link statistics. Weibull-type theories have later been
extended to reinforced concrete structures in general. In these extensions,
the probability of failure of a structure and the mean nominal stress at

failure are:

o(P,x)ym dV(x)
Prob (P) = 1 - exp -I [ 75 ] Vr (7)
v
oy = t5 J [1-Prob(P)]dP (8)
o

in which V = volume of the structure, Vr- constant, m and o9 = material

constants representing the Weibull modulus and the threshold stress. The key
to applications of Weibull theory is function o¢(P,x), representing the stress
caused by load P at location x. Determination of this stress distribution is
easy only for structures which fail at initiation of macroscopic crack growth
(which is the case for most metallic structures, e.g. the failure of an engine
pylon in an aircraft). In such a case, the stress distribution is calculated
according to elasticity for a structure without any crack. Such a simplifica-
tion has been widely used in various Weibull-type analyses of concrete struct-

ures, but it is invalid.
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Due to reinforcement as well as the existence of strain softening,
concrete structures do not fail at crack initiation. In fact, design codes
require the failure to be sufficiently higher than the crack initiation load.
Consequently, a concrete structure undergoes pronounced inelastic deformation
and macroscopic crack growths prior to reaching the failure load. This causes
severe stress redistributions such that the distribution o(P,x) at failure is
very different from the elastic distribution at no crack. The aforementioned
stress distributions are difficult to determine, but the near-tip asymptotic
elastic stress field might be a good approximation at distances not too large
and not too small from the tip of the macrocrack at the moment of failure.
Now, due to singularity of this stress field, the stress values farther away
from the tip of a microcrack are relatively small and make in Fig. 8 a
negligible contribution to 3& compared to the stresses in the volume of the
fracture process zone around the macrocrack tip. Due to this singularity, the
volume in which the strength values matter is quite small, usually a small
part of the entire volume of the structure. This causes the statistical size
effect to become weak.

In any event, the random statistical size effect comes only after the
size effect caused by the stress redistributions, which is deterministic,
would exist even if the strength showed no randomness, and is explained by the
release of stored energy associated with the stress redistribution. If there
is any statistical size effect, it can be manifested only by the remaining
portion of measured size effect which is unaccounted for by the fracture
mechanics size effect. But no such unaccounted portion is apparent from the
existing tests.

To sum up, explaining the size effect in reinforced concrete structures
only by Weibull-type statistical theory is incorrect. Nevertheless, a
combination of this theory with the size effect law in Fig. 1 (Bazant 1984)

might be an improvement.
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